-1/5x+40=-2x+4

Simple and best practice solution for -1/5x+40=-2x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/5x+40=-2x+4 equation:



-1/5x+40=-2x+4
We move all terms to the left:
-1/5x+40-(-2x+4)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We get rid of parentheses
-1/5x+2x-4+40=0
We multiply all the terms by the denominator
2x*5x-4*5x+40*5x-1=0
Wy multiply elements
10x^2-20x+200x-1=0
We add all the numbers together, and all the variables
10x^2+180x-1=0
a = 10; b = 180; c = -1;
Δ = b2-4ac
Δ = 1802-4·10·(-1)
Δ = 32440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32440}=\sqrt{4*8110}=\sqrt{4}*\sqrt{8110}=2\sqrt{8110}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(180)-2\sqrt{8110}}{2*10}=\frac{-180-2\sqrt{8110}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(180)+2\sqrt{8110}}{2*10}=\frac{-180+2\sqrt{8110}}{20} $

See similar equations:

| -6v+13=-29 | | 3(6+7r)+4=127 | | 5/6x-1=-5x+1/3 | | 0=(2x-3)(x+4) | | -7x-16x=92 | | X^3-8x^2+5x+7=0 | | 1/26=x/11 | | 2(6x+4)=3(4x+5)-7 | | 2x+×+(×/3)+50=360 | | 10(-2x+15)=-4(5x+12) | | 25t=5(6t-10) | | 6(x+3)=2(5x-9) | | F(x)=400(1.23) | | 3x(4x+5)=0 | | 6g+2100=10g+1500 | | -2x+30=2x+2 | | -6x+-2=-20 | | 4x^-25=0 | | 8x/4-6=4 | | 25/100=x/70 | | 3x(x+5)+x=7 | | A=4.n+8/2.n+3 | | $x^2+6x+9=24$ | | y/7+7.1=-4.1 | | -13=7+5v | | 194-u=274 | | A=4.n+6/2.n+3 | | 6-3k=5k-24 | | 3(4x+2)=2(6x+3) | | 7g+2=3g+8 | | ((7x^2+3x)/5x+9)=12 | | -1/2(-3/2x+6x+1)-3x=-51/4x-1/2 |

Equations solver categories