If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-1/5x+-12=-0.2x-24/2
We move all terms to the left:
-1/5x+-12-(-0.2x-24/2)=0
Domain of the equation: 5x!=0We add all the numbers together, and all the variables
x!=0/5
x!=0
x∈R
-1/5x-(-0.2x-12)-12+=0
We add all the numbers together, and all the variables
-1/5x-(-0.2x-12)=0
We get rid of parentheses
-1/5x+0.2x+12=0
We multiply all the terms by the denominator
(0.2x)*5x+12*5x-1=0
We add all the numbers together, and all the variables
(+0.2x)*5x+12*5x-1=0
We multiply parentheses
0x^2+12*5x-1=0
Wy multiply elements
0x^2+60x-1=0
We add all the numbers together, and all the variables
x^2+60x-1=0
a = 1; b = 60; c = -1;
Δ = b2-4ac
Δ = 602-4·1·(-1)
Δ = 3604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3604}=\sqrt{4*901}=\sqrt{4}*\sqrt{901}=2\sqrt{901}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-2\sqrt{901}}{2*1}=\frac{-60-2\sqrt{901}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+2\sqrt{901}}{2*1}=\frac{-60+2\sqrt{901}}{2} $
| 103+7x+19=180 | | 1.5x+6.5=3/2x+13/2 | | 0.72x+x+4=90 | | a+5=42•6 | | 32+4x=80 | | 32=-18y | | 2(3x+5)=9x+1-3x+9 | | 8×+10y=80 | | 100x-50=10(10x-5) | | 9x+21x-7=6(5x=9) | | 32x+25=32x+84 | | 21-2y=13 | | 4(-3)(-5)=a | | 6x+24x-1=6(5x+8 | | 4x+x=2=8x-3x+2 | | 72/3y=8 | | 32x+1,208x-80=31(40x+21) | | 7x²-24x=0 | | 2(x+5)=5x+8-3x+2 | | (w-1=3(w+3) | | 8-4(2x-1)=8x | | 3x+5+15x=113 | | 4(2x+8)=10x+4-2x+28 | | 2x(x−4)=0. | | 2x-3+4x=6x-3 | | 3x^2+3x+54=270 | | 180x-60=15(12x-4) | | 180x-60=15(12x-4 | | 4=10x+7 | | 6x+18x-8=6(4x+9) | | 13x+50=13x+55 | | 7x+5x-1=3(4x+1) |