-1/4a-4=7/5a-3

Simple and best practice solution for -1/4a-4=7/5a-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/4a-4=7/5a-3 equation:



-1/4a-4=7/5a-3
We move all terms to the left:
-1/4a-4-(7/5a-3)=0
Domain of the equation: 4a!=0
a!=0/4
a!=0
a∈R
Domain of the equation: 5a-3)!=0
a∈R
We get rid of parentheses
-1/4a-7/5a+3-4=0
We calculate fractions
(-5a)/20a^2+(-28a)/20a^2+3-4=0
We add all the numbers together, and all the variables
(-5a)/20a^2+(-28a)/20a^2-1=0
We multiply all the terms by the denominator
(-5a)+(-28a)-1*20a^2=0
Wy multiply elements
-20a^2+(-5a)+(-28a)=0
We get rid of parentheses
-20a^2-5a-28a=0
We add all the numbers together, and all the variables
-20a^2-33a=0
a = -20; b = -33; c = 0;
Δ = b2-4ac
Δ = -332-4·(-20)·0
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1089}=33$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-33}{2*-20}=\frac{0}{-40} =0 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+33}{2*-20}=\frac{66}{-40} =-1+13/20 $

See similar equations:

| 180=16x^2-3x | | (2x+20)^2+4x^2=2000 | | X+2x+2x-70=180 | | 12x^2+6x=116 | | -2-3/7b=-4 | | x2+5x-8=0 | | (2x=4)(x+6) | | 5x-2x-5=3x-5 | | x=2/1.4 | | X+Y+4z=-16 | | 3x-20=x=20 | | 8x-8=92 | | 12x(1+5)=24 | | X+6y-5=0 | | 7x-3x-4=12 | | 3x+6x-4x=100 | | 3*5^0.2w=720 | | 41-2n=21 | | 2w-14=8 | | 7x-17=-14+25 | | 4/7u=16 | | 10x+8=6+9x | | 1/3(24)128π=1/3πx^2(24) | | 128π=1/3πx^2(24) | | 9(x-6)+19=9x-35 | | 6=6x+2 | | 3x-24=8x-11 | | 12+x=÷4=-6-×=÷2 | | (12+x)÷4=(-6-x)÷2 | | 12+x÷4=-6-x÷2 | | -6=3y-(1) | | (9x-53)=(2x+45) |

Equations solver categories