-1/4a+1=7+4.5a

Simple and best practice solution for -1/4a+1=7+4.5a equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/4a+1=7+4.5a equation:



-1/4a+1=7+4.5a
We move all terms to the left:
-1/4a+1-(7+4.5a)=0
Domain of the equation: 4a!=0
a!=0/4
a!=0
a∈R
We add all the numbers together, and all the variables
-1/4a-(4.5a+7)+1=0
We get rid of parentheses
-1/4a-4.5a-7+1=0
We multiply all the terms by the denominator
-(4.5a)*4a-7*4a+1*4a-1=0
We add all the numbers together, and all the variables
-(+4.5a)*4a-7*4a+1*4a-1=0
We multiply parentheses
-16a^2-7*4a+1*4a-1=0
Wy multiply elements
-16a^2-28a+4a-1=0
We add all the numbers together, and all the variables
-16a^2-24a-1=0
a = -16; b = -24; c = -1;
Δ = b2-4ac
Δ = -242-4·(-16)·(-1)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-16\sqrt{2}}{2*-16}=\frac{24-16\sqrt{2}}{-32} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+16\sqrt{2}}{2*-16}=\frac{24+16\sqrt{2}}{-32} $

See similar equations:

| 64k^2-9=7 | | 6.7=a/10+6 | | 7r^2=259 | | 9x+5x+20-92=180 | | 2x+5x-124=86 | | 3/5x-2=24 | | -8x=-2(2x=8) | | 5x+48+7x=15(x+4) | | 15=-3w-6 | | (-1/5x^2)+4=-1 | | 1/5x^2+4=-1 | | 3(4x-15)=39 | | |9x+84|=|2x-7| | | 1/3x+5/6=1/2x+2 | | 6x−30=42 | | 2x^2+3x+1=66 | | 35+33+x=180 | | 7^x-2=3x+6 | | -3(5-2x)+8=4-3(2x+1 | | 82-5/2x=62 | | -6n+13=67 | | 8x-19=x+23 | | 53=23+5x | | (b+4)(b+5)= | | 4x+18=30-2x | | -4r+9=5 | | 12(-5x+6-6(2x-8=20 | | 14-2w=38 | | 6x-33=7-4x | | k/6-5=2 | | t÷3=2 | | 26=4d+10 |

Equations solver categories