-1/3y-6=-17+1/4y

Simple and best practice solution for -1/3y-6=-17+1/4y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/3y-6=-17+1/4y equation:



-1/3y-6=-17+1/4y
We move all terms to the left:
-1/3y-6-(-17+1/4y)=0
Domain of the equation: 3y!=0
y!=0/3
y!=0
y∈R
Domain of the equation: 4y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
-1/3y-(1/4y-17)-6=0
We get rid of parentheses
-1/3y-1/4y+17-6=0
We calculate fractions
(-4y)/12y^2+(-3y)/12y^2+17-6=0
We add all the numbers together, and all the variables
(-4y)/12y^2+(-3y)/12y^2+11=0
We multiply all the terms by the denominator
(-4y)+(-3y)+11*12y^2=0
Wy multiply elements
132y^2+(-4y)+(-3y)=0
We get rid of parentheses
132y^2-4y-3y=0
We add all the numbers together, and all the variables
132y^2-7y=0
a = 132; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·132·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*132}=\frac{0}{264} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*132}=\frac{14}{264} =7/132 $

See similar equations:

| 12-6x=8(-7-5x) | | -3(-4x-8)=120 | | 2x(x-2)=96 | | (x-5)^-4=0 | | -3(-3+x)=-3 | | 6y+3=19 | | (100-x)*100/x=50 | | 8+x-2x=17 | | 22=-3x+414 | | 11x^+14=47 | | 29(4x−2)=4 | | 4+2x=49 | | 6x-x-3=17 | | 18=x/5-12 | | -6g=-9-3g | | -5+y/3=-2 | | -(s-17)=3 | | 8-2x÷12=2 | | 2a+3a+4a=9a-18 | | 3.4=j/3 | | 4x²=5x-1 | | 4.72.3=3x | | 15x+2x-1=18 | | | | -16=5=+u/3 | | | | | | 2x²-24=28 | | 14x^2−7=0 | | 4x+5(3x-7)=1 | | 7x-45+8x-60=90 | | 1.5/6=10/pp |

Equations solver categories