-1/3x+0=-1/2x+5

Simple and best practice solution for -1/3x+0=-1/2x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/3x+0=-1/2x+5 equation:



-1/3x+0=-1/2x+5
We move all terms to the left:
-1/3x+0-(-1/2x+5)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 2x+5)!=0
x∈R
We add all the numbers together, and all the variables
-1/3x-(-1/2x+5)=0
We get rid of parentheses
-1/3x+1/2x-5=0
We calculate fractions
(-2x)/6x^2+3x/6x^2-5=0
We multiply all the terms by the denominator
(-2x)+3x-5*6x^2=0
We add all the numbers together, and all the variables
3x+(-2x)-5*6x^2=0
Wy multiply elements
-30x^2+3x+(-2x)=0
We get rid of parentheses
-30x^2+3x-2x=0
We add all the numbers together, and all the variables
-30x^2+x=0
a = -30; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-30)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-30}=\frac{-2}{-60} =1/30 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-30}=\frac{0}{-60} =0 $

See similar equations:

| 10w–5w+2w=10w–7w | | 1/(x)+(x/(2x+4))-(2/(x^2-2x))=0 | | 3x–7(4+2x)=–x+2 | | x+3=3/8 | | 15x-45=75x75 | | 0.18(y-6)+0.08y=0.14y-0.03(20) | | 15x-45=75x-75 | | 15x-45=15x-75 | | -235/4-x/8=7x/8=765/4 | | -8x+14x=-2(4x-7) | | -45x-45=-75x-75 | | 2z+5/9=3z+1/9 | | x-1+6x+x+5=180 | | -1/4+x=4/5 | | (33-x²)-(3x-200)=x | | (33-x²)-(3x-200)=0 | | 3y-8=5y+4= | | -10=5(8+r) | | -31-4x=-5-5(1*5x) | | 4x+5=2× | | 5z=-3(2+7 | | (4x-20)3/2=8 | | 8-3t=0.10 | | 5z=12-27 | | 3(q-2)+3=5q-7-2q | | 66+7x=13x+12 | | 21x-3=53 | | 3/8=1x+3 | | 132-2x=4x | | 25x-3=1 | | y+y*0.1=144000 | | 1x+1/3=-3/5 |

Equations solver categories