If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-1/3p+1/5p=7/45
We move all terms to the left:
-1/3p+1/5p-(7/45)=0
Domain of the equation: 3p!=0
p!=0/3
p!=0
p∈R
Domain of the equation: 5p!=0We add all the numbers together, and all the variables
p!=0/5
p!=0
p∈R
-1/3p+1/5p-(+7/45)=0
We get rid of parentheses
-1/3p+1/5p-7/45=0
We calculate fractions
(-525p^2)/2700p^2+(-900p)/2700p^2+540p/2700p^2=0
We multiply all the terms by the denominator
(-525p^2)+(-900p)+540p=0
We add all the numbers together, and all the variables
(-525p^2)+540p+(-900p)=0
We get rid of parentheses
-525p^2+540p-900p=0
We add all the numbers together, and all the variables
-525p^2-360p=0
a = -525; b = -360; c = 0;
Δ = b2-4ac
Δ = -3602-4·(-525)·0
Δ = 129600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{129600}=360$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-360)-360}{2*-525}=\frac{0}{-1050} =0 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-360)+360}{2*-525}=\frac{720}{-1050} =-24/35 $
| -2(3k-6)=3(k=5) | | 1/4x+10/3+3/4x=61/12 | | 2x+-4(x-1)=10 | | 3(5x+1)=-4(2x-4)-5x | | -11+3(b+)=7 | | -6(2x+9)=-12x-54 | | 2/5(x+7)=1 | | -1/3=1/3n-1/3-2n | | 1/4(2(x-1)+12=x | | 7(3x-8)-7(2x-6)=-70 | | m-21=8 | | |19-7x|=16 | | x/4-3x=4x-x/4-5x | | 6-7n=2n-8 | | 9x=4(x-2)-7 | | -0.3x=-2.4 | | 5c+8=3c-14 | | 3(7+7r)-8(r-7)=12 | | 3(3x+12)=5 | | y^2-6y=9 | | 3m+5=13 | | 6(2v-5)+2(v-5)=44 | | 2x-4x-15=-2x+2-15 | | 3y-5=9y+7 | | 52-5k=2k+10 | | 3z+8=2 | | -90=-7x-2(1+2x) | | 10x+10=x+82 | | -2.7x+0.4=2.8-1.2 | | -1.654x^2+37.611x-161.828=0 | | -247-4x=-17x+13 | | k/3+4=-6 |