-1/2y-2/5=1/5y+5

Simple and best practice solution for -1/2y-2/5=1/5y+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/2y-2/5=1/5y+5 equation:



-1/2y-2/5=1/5y+5
We move all terms to the left:
-1/2y-2/5-(1/5y+5)=0
Domain of the equation: 2y!=0
y!=0/2
y!=0
y∈R
Domain of the equation: 5y+5)!=0
y∈R
We get rid of parentheses
-1/2y-1/5y-5-2/5=0
We calculate fractions
(-125y)/250y^2+(-2y)/250y^2+(-4y)/250y^2-5=0
We multiply all the terms by the denominator
(-125y)+(-2y)+(-4y)-5*250y^2=0
Wy multiply elements
-1250y^2+(-125y)+(-2y)+(-4y)=0
We get rid of parentheses
-1250y^2-125y-2y-4y=0
We add all the numbers together, and all the variables
-1250y^2-131y=0
a = -1250; b = -131; c = 0;
Δ = b2-4ac
Δ = -1312-4·(-1250)·0
Δ = 17161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{17161}=131$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-131)-131}{2*-1250}=\frac{0}{-2500} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-131)+131}{2*-1250}=\frac{262}{-2500} =-131/1250 $

See similar equations:

| x2+0.6x=68.8 | | 6.2=u-33.3 | | 2(a+2)=8 | | -14=-3v-4v | | x^2-15x-45=0 | | 2x-13+x+x+45=180 | | 3x+4=-17+4x | | 9(x+5)=-3+(x-39) | | 1/3x+5=3 | | 4x-3=2-7 | | -7/4=2/5v-7/3 | | 7(x-3)+24=-18 | | -.6x=3 | | 9-x=111 | | 93=8x-3 | | -10(x+6)+25x=-30 | | 1,2n=40 | | -8(x+3)-2x=26 | | 4(5x+10)-15x=20 | | -3(4x+8)+15x=36 | | 2(x-4+6x=48 | | .625x=3 | | 58-19=a | | | | 6(x-4)+30=6 | | -3y+5=-4y+89 | | -2(x+3)+4x=18 | | 0-8y=3 | | 9-3=q | | X+-50x=300 | | | | 68-41=z |

Equations solver categories