-1/2x-1=1/4x-4

Simple and best practice solution for -1/2x-1=1/4x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/2x-1=1/4x-4 equation:



-1/2x-1=1/4x-4
We move all terms to the left:
-1/2x-1-(1/4x-4)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 4x-4)!=0
x∈R
We get rid of parentheses
-1/2x-1/4x+4-1=0
We calculate fractions
(-4x)/8x^2+(-2x)/8x^2+4-1=0
We add all the numbers together, and all the variables
(-4x)/8x^2+(-2x)/8x^2+3=0
We multiply all the terms by the denominator
(-4x)+(-2x)+3*8x^2=0
Wy multiply elements
24x^2+(-4x)+(-2x)=0
We get rid of parentheses
24x^2-4x-2x=0
We add all the numbers together, and all the variables
24x^2-6x=0
a = 24; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·24·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*24}=\frac{0}{48} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*24}=\frac{12}{48} =1/4 $

See similar equations:

| (8)(13^7x)=73 | | 4j+5=49 | | -4+5d=-5d-4 | | 2x/5-2=8 | | 4-3m=-23 | | 100y-25=25y+50 | | 9≥4x+1=12x+312x+3 | | 74+90+x=180 | | 2+6(x-4)=4x-18+3x | | -3x=1=7+x | | 8-6v=-10v | | 6+1=14y+4-13y | | 11/2r-2/3r=-3/2 | | 7(2e-1)-36=6e | | 3y-3+3y-1=180 | | -2h+5=-h | | 2w-10=8(w+1) | | X=55.75+-1.25y | | 10+4b=38 | | 4=0,3x | | 5+10k=25 | | 22-2-5x=0 | | 8x=1-x2 | | 192+x=180 | | 4(v+8)-7v=8 | | (3x-3)=60 | | x(x+2)+4=5(3x-4) | | 2x30=x+15 | | x^=2*6 | | 6y=10=4y | | 11/35=x/6 | | 3y2=1-y |

Equations solver categories