-1/2x+6.5=2x-6.5

Simple and best practice solution for -1/2x+6.5=2x-6.5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/2x+6.5=2x-6.5 equation:



-1/2x+6.5=2x-6.5
We move all terms to the left:
-1/2x+6.5-(2x-6.5)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We get rid of parentheses
-1/2x-2x+6.5+6.5=0
We multiply all the terms by the denominator
-2x*2x+(6.5)*2x+(6.5)*2x-1=0
We multiply parentheses
-2x*2x+13x+13x-1=0
Wy multiply elements
-4x^2+13x+13x-1=0
We add all the numbers together, and all the variables
-4x^2+26x-1=0
a = -4; b = 26; c = -1;
Δ = b2-4ac
Δ = 262-4·(-4)·(-1)
Δ = 660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{660}=\sqrt{4*165}=\sqrt{4}*\sqrt{165}=2\sqrt{165}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{165}}{2*-4}=\frac{-26-2\sqrt{165}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{165}}{2*-4}=\frac{-26+2\sqrt{165}}{-8} $

See similar equations:

| 4m=3N-0.12 | | 5x-18=7x-38 | | 8(x+4)-7=38 | | 2x+6=-3+16 | | 5x+2+2x-17=180 | | 8j=6+7j | | 4(x+2)-x=6x-2-x | | -94=2(1=4x)+8x | | 50(x+7)-260=10(5x+9) | | (6x+22)=8x | | 10x=6+7 | | -2=-4z-8+3z | | 4x+4+6x-2=82 | | 7.2=–u | | -5+y=3/5 | | 11a+3=58 | | 5x-2+2x-17=180 | | -7=b/4-6 | | 11(3x-9)=0 | | 3x-32=-7x+60 | | -3g=8+g | | Y=-1/2x+6.5 | | 8x(3.8+13.2)=6 | | 44b+38=108 | | 6=7x=7=3x | | Y2-40=7y | | n=-2+4 | | 4x+135+4x+29=180 | | 3-2n=-17 | | -40=7(-2x+2)-4 | | -(6x-6)=6x+6 | | 4x²-12=x² |

Equations solver categories