If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-1/2x+1=-x+1
We move all terms to the left:
-1/2x+1-(-x+1)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
-1/2x-(-1x+1)+1=0
We get rid of parentheses
-1/2x+1x-1+1=0
We multiply all the terms by the denominator
1x*2x-1*2x+1*2x-1=0
Wy multiply elements
2x^2-2x+2x-1=0
We add all the numbers together, and all the variables
2x^2-1=0
a = 2; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·2·(-1)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*2}=\frac{0-2\sqrt{2}}{4} =-\frac{2\sqrt{2}}{4} =-\frac{\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*2}=\frac{0+2\sqrt{2}}{4} =\frac{2\sqrt{2}}{4} =\frac{\sqrt{2}}{2} $
| 7^2x+3=7^x+5 | | 2y-8/3=6 | | 5(x+2)-2x=2(x+5) | | 30x-60=10(3x-6) | | 115=−5(−6−2k)+5 | | 8-x=7x+48 | | 3(7-5y)+2y=1 | | 5(1+4x)-7(x-7)=15 | | 21x+15=21x+74 | | 2/7u+8=11 | | 7t/8=14 | | 10-2x-(-2)(x-3)=-(3x-4) | | 8(x+21)=2x+16 | | 4/x+4-2/x=2 | | 28+23n=35+19n | | x+5x+4=2(3x+2) | | 2x-5(x-5)=-9+3x+10 | | 0.2+3/2/311=1.1x/5 | | 10v-9v=10 | | 4k-7+8=31 | | (2x+1)+33=180 | | 6t+2=10t-30 | | 3(3b+4)=30 | | 7-x=9x+34 | | 2x-3/2x-1/3=5/3 | | 19j-14j=15 | | 11m+13=11m+23 | | -7/3x=-14 | | 3/4+1/4y=5 | | 5y+4=4y-4 | | -28-6y=7(4y+3) | | +0.375x=9 |