-1/2a-4=7/4a-3

Simple and best practice solution for -1/2a-4=7/4a-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/2a-4=7/4a-3 equation:



-1/2a-4=7/4a-3
We move all terms to the left:
-1/2a-4-(7/4a-3)=0
Domain of the equation: 2a!=0
a!=0/2
a!=0
a∈R
Domain of the equation: 4a-3)!=0
a∈R
We get rid of parentheses
-1/2a-7/4a+3-4=0
We calculate fractions
(-4a)/8a^2+(-14a)/8a^2+3-4=0
We add all the numbers together, and all the variables
(-4a)/8a^2+(-14a)/8a^2-1=0
We multiply all the terms by the denominator
(-4a)+(-14a)-1*8a^2=0
Wy multiply elements
-8a^2+(-4a)+(-14a)=0
We get rid of parentheses
-8a^2-4a-14a=0
We add all the numbers together, and all the variables
-8a^2-18a=0
a = -8; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·(-8)·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{324}=18$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*-8}=\frac{0}{-16} =0 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*-8}=\frac{36}{-16} =-2+1/4 $

See similar equations:

| n/10+7=31 | | t−20=13 | | 6(x-3)=-(x-17) | | 32-5b+6b=7.25 | | -3.4=-2.1+n/3 | | 3x=5x-2=18x= | | -5-6w=-8w-7 | | -8m-9=126+7m | | 1.4g=4.2 | | 3x-1•8x-7=5x-3•4x-3 | | 6(x−3)=−(x−17) | | 5(y–2)=2(y+1) | | 4x³-5=-37 | | -4a=-21-7a | | 6=m(10) | | 3w+5=-1+2w | | r−64=16 | | 1(2r-1)=-2(3r+16) | | -8k-79=3k-2 | | -9x=40 | | 7t+28+56=0 | | f+24=55 | | 36-3z=3z | | 120=4x-5+x+5 | | 83x=126 | | |10+6k|/10=4 | | 4(x-6+6=6x-4 | | 1.8c+32=-27 | | 6/5​ x=−3/10​ | | 1.8c+32=27 | | 4(8n-10)=19+32 | | 1/3+t=7/12 |

Equations solver categories