If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-1.125x^2+2.5x=0
a = -1.125; b = 2.5; c = 0;
Δ = b2-4ac
Δ = 2.52-4·(-1.125)·0
Δ = 6.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2.5)-\sqrt{6.25}}{2*-1.125}=\frac{-2.5-\sqrt{6.25}}{-2.25} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2.5)+\sqrt{6.25}}{2*-1.125}=\frac{-2.5+\sqrt{6.25}}{-2.25} $
| d+3,567=0 | | $$d+3,567=0 | | 46+2x+3=92+5x-8 | | 4(t-7)=3(2t+1) | | -4(3-x)^=11x-33 | | –5x(x+6)=0 | | 4c-6=-20c+18 | | 2x-13=5+6x | | 180÷5x°=5x°÷180 | | 6(3h-4)=96 | | K=5t+13 | | x-x*0.16=338788 | | 8k=7–9 | | z*z*z*10+z*z*z*15=8575 | | 3t-24=5t-72 | | a/2=45/5 | | 9a=45*5 | | 9a=45(5) | | 5a=45*5 | | 18/2x=36 | | n.6=126 | | 4(c-4)=-16 | | 6,4+x+2,5x+4,5x=12,12 | | l-43=8 | | 7(3-d)=2(9d+3) | | 6(6c-11)=6(9c-14) | | 6(6c-11)=6(6-9c | | 5x-8=15+32 | | 2x+2(x+10)=280 | | 27=6+7e | | 5-2e=29-6e | | x–(90–x)=30 |