-0.5x+1=1/2x-1

Simple and best practice solution for -0.5x+1=1/2x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -0.5x+1=1/2x-1 equation:



-0.5x+1=1/2x-1
We move all terms to the left:
-0.5x+1-(1/2x-1)=0
Domain of the equation: 2x-1)!=0
x∈R
We get rid of parentheses
-0.5x-1/2x+1+1=0
We multiply all the terms by the denominator
-(0.5x)*2x+1*2x+1*2x-1=0
We add all the numbers together, and all the variables
-(+0.5x)*2x+1*2x+1*2x-1=0
We multiply parentheses
-0x^2+1*2x+1*2x-1=0
Wy multiply elements
-0x^2+2x+2x-1=0
We add all the numbers together, and all the variables
-1x^2+4x-1=0
a = -1; b = 4; c = -1;
Δ = b2-4ac
Δ = 42-4·(-1)·(-1)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{3}}{2*-1}=\frac{-4-2\sqrt{3}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{3}}{2*-1}=\frac{-4+2\sqrt{3}}{-2} $

See similar equations:

| 20+4=x6 | | 200/3x=0 | | -3(r-14)=15 | | X^2+184x=0 | | 2(3^(n-1)+14)=82 | | 0.15=0.04+b(0.12-0.04)= | | x/0.5x=20 | | x/2=3,5 | | 2w+7w=49 | | 20n–15=5 | | 300000000=(.13x)+x | | 4p2+3p−3=0 | | -14.7+3.3y=18.3 | | 4(50-x)=120 | | 36+2(3x-8)=-4+7x-x+24 | | 130=0.5(x)-20 | | 71/21x=30 | | 2x+4=2+10 | | 8/213x=30 | | 5x+45+3x-19=90 | | 9x-3(4x+7)=28 | | 4x-15°=3x+5° | | 336=x(6x) | | 5x-22=32 | | 6b+2(-3b+7)=14 | | 2x+19-6x=21x+2–15x–3 | | 4x+5+7x+3+90=360 | | 10x-3+15x+8=180 | | 0.2x–3=x | | 6×-10y=18.12×-4y=-126 | | 2m=15-8=7 | | 9x-8+2x+3+90=180 |

Equations solver categories