-(7z(11z+1))=1+(3z+3)

Simple and best practice solution for -(7z(11z+1))=1+(3z+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -(7z(11z+1))=1+(3z+3) equation:


Simplifying
-1(7z(11z + 1)) = 1 + (3z + 3)

Reorder the terms:
-1(7z(1 + 11z)) = 1 + (3z + 3)
-1((1 * 7z + 11z * 7z)) = 1 + (3z + 3)
-1((7z + 77z2)) = 1 + (3z + 3)
(7z * -1 + 77z2 * -1) = 1 + (3z + 3)
(-7z + -77z2) = 1 + (3z + 3)

Reorder the terms:
-7z + -77z2 = 1 + (3 + 3z)

Remove parenthesis around (3 + 3z)
-7z + -77z2 = 1 + 3 + 3z

Combine like terms: 1 + 3 = 4
-7z + -77z2 = 4 + 3z

Solving
-7z + -77z2 = 4 + 3z

Solving for variable 'z'.

Reorder the terms:
-4 + -7z + -3z + -77z2 = 4 + 3z + -4 + -3z

Combine like terms: -7z + -3z = -10z
-4 + -10z + -77z2 = 4 + 3z + -4 + -3z

Reorder the terms:
-4 + -10z + -77z2 = 4 + -4 + 3z + -3z

Combine like terms: 4 + -4 = 0
-4 + -10z + -77z2 = 0 + 3z + -3z
-4 + -10z + -77z2 = 3z + -3z

Combine like terms: 3z + -3z = 0
-4 + -10z + -77z2 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(4 + 10z + 77z2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(4 + 10z + 77z2)' equal to zero and attempt to solve: Simplifying 4 + 10z + 77z2 = 0 Solving 4 + 10z + 77z2 = 0 Begin completing the square. Divide all terms by 77 the coefficient of the squared term: Divide each side by '77'. 0.05194805195 + 0.1298701299z + z2 = 0 Move the constant term to the right: Add '-0.05194805195' to each side of the equation. 0.05194805195 + 0.1298701299z + -0.05194805195 + z2 = 0 + -0.05194805195 Reorder the terms: 0.05194805195 + -0.05194805195 + 0.1298701299z + z2 = 0 + -0.05194805195 Combine like terms: 0.05194805195 + -0.05194805195 = 0.00000000000 0.00000000000 + 0.1298701299z + z2 = 0 + -0.05194805195 0.1298701299z + z2 = 0 + -0.05194805195 Combine like terms: 0 + -0.05194805195 = -0.05194805195 0.1298701299z + z2 = -0.05194805195 The z term is 0.1298701299z. Take half its coefficient (0.06493506495). Square it (0.004216562660) and add it to both sides. Add '0.004216562660' to each side of the equation. 0.1298701299z + 0.004216562660 + z2 = -0.05194805195 + 0.004216562660 Reorder the terms: 0.004216562660 + 0.1298701299z + z2 = -0.05194805195 + 0.004216562660 Combine like terms: -0.05194805195 + 0.004216562660 = -0.04773148929 0.004216562660 + 0.1298701299z + z2 = -0.04773148929 Factor a perfect square on the left side: (z + 0.06493506495)(z + 0.06493506495) = -0.04773148929 Can't calculate square root of the right side. The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| 1/2x+6=16x | | 1/9x+8=-4 | | -42m-10=80 | | 9x=-28+73 | | -4x^3+4x=0 | | 3+6+x=4+5 | | 3r^2+5r-1=0 | | d-7=-20 | | 3(x+5)-4=-11 | | 12x-16y=92 | | 3(x+5)-4=11 | | 0.8=0.5 | | 0.8n=0.5 | | -27-7=-4 | | 5x+17-10x=19+6x-7 | | 5x-2(4x+3)=20 | | 130=2y+x | | -4=9/-3-2 | | -4=u/-3-2 | | 2t+3=t-10 | | 2x-3(4x+8)=2(5+x) | | (-23/4)-1/6 | | (m-3)^1/2=(m^1/2)-3 | | 3e^2x+2=10 | | 4-2(3x+1)=-5(6x+30) | | 15x+30x=1000-450 | | 49m^2-140m+100=0 | | 15x+30x=1000 | | 4+2(3x+2)-2(3+5x)=0 | | V/3+v/v+5=-4/v+5 | | 4x+18=40 | | 14-2(5+x)+3(4+5x)=0 |

Equations solver categories