-(7/4v-12)+2=5/v-3

Simple and best practice solution for -(7/4v-12)+2=5/v-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -(7/4v-12)+2=5/v-3 equation:



-(7/4v-12)+2=5/v-3
We move all terms to the left:
-(7/4v-12)+2-(5/v-3)=0
Domain of the equation: 4v-12)!=0
v∈R
Domain of the equation: v-3)!=0
v∈R
We get rid of parentheses
-7/4v-5/v+12+3+2=0
We calculate fractions
(-7v)/4v^2+(-20v)/4v^2+12+3+2=0
We add all the numbers together, and all the variables
(-7v)/4v^2+(-20v)/4v^2+17=0
We multiply all the terms by the denominator
(-7v)+(-20v)+17*4v^2=0
Wy multiply elements
68v^2+(-7v)+(-20v)=0
We get rid of parentheses
68v^2-7v-20v=0
We add all the numbers together, and all the variables
68v^2-27v=0
a = 68; b = -27; c = 0;
Δ = b2-4ac
Δ = -272-4·68·0
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{729}=27$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-27}{2*68}=\frac{0}{136} =0 $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+27}{2*68}=\frac{54}{136} =27/68 $

See similar equations:

| 12x-5x+145=12x+100 | | 8*2y=32 | | ((2-4x)/2)-2x=-2/5+((8-12x)/3) | | ((2-4x)/2)-2x=-2/5+(8-12x)/3 | | q+4.4/q=1.2 | | -14+24=-5(x+7) | | 20=y/4-8 | | 9−x2/3=0 | | 7-9x+3-x=-29x+5 | | 1/2x+1=-7 | | 0=-2.7t^2+40t+6.5 | | ×=10-8a | | -2.7t^2+40t-7.5=0 | | ×=5+4a | | 0=-2.7t^2+50t+6.5 | | 8u-4u=32 | | 5(x-11)=4x+15 | | y^2-10y-48=0 | | 3x=8x-90 | | 2y^2-10y+48=0 | | 2x=3(x-4)=2x(x-3) | | -2.7t^2+50t-11.5=0 | | C+1=2c-9 | | 1/2m+1/3m=m-3 | | 3(2x=1)-2(x-2)=5 | | 3x+5-8=96 | | 0=-2.7t^2+60t+6.5 | | -2.7t^2+30t-11.5=0 | | 20y+5y^2+4+y=0 | | 20y+5y^2+4+y20y=0 | | 2/5(x-1/3)=2/3(1/2-2x) | | 11x+28=12x-4+15x |

Equations solver categories