If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-(5/6)(9+2x)=40
We move all terms to the left:
-(5/6)(9+2x)-(40)=0
Domain of the equation: 6)(9+2x)!=0We add all the numbers together, and all the variables
x∈R
-(+5/6)(2x+9)-40=0
We multiply parentheses ..
-(+10x^2+5/6*9)-40=0
We multiply all the terms by the denominator
-(+10x^2+5-40*6*9)=0
We get rid of parentheses
-10x^2-5+40*6*9=0
We add all the numbers together, and all the variables
-10x^2+2155=0
a = -10; b = 0; c = +2155;
Δ = b2-4ac
Δ = 02-4·(-10)·2155
Δ = 86200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{86200}=\sqrt{100*862}=\sqrt{100}*\sqrt{862}=10\sqrt{862}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{862}}{2*-10}=\frac{0-10\sqrt{862}}{-20} =-\frac{10\sqrt{862}}{-20} =-\frac{\sqrt{862}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{862}}{2*-10}=\frac{0+10\sqrt{862}}{-20} =\frac{10\sqrt{862}}{-20} =\frac{\sqrt{862}}{-2} $
| 2(6x-1)=10 | | 2x-8+3x+5=180 | | 15/z=0 | | -6+p=48 | | 6x+21+51=180 | | (5+5x)+100=90 | | 5(3x+7)-(15x+5)=30 | | 855=15(h+38) | | (n/10)+0.4=-0.791 | | 47=t/8+39 | | -3x8=3x-4 | | 4(x+1)=6x+7-2x | | 2x^2-24x-72=0 | | -0.2+x=1.6 | | 0.454=x52 | | x(3x)(3x)(3x)=123 | | 4x=-10x+28 | | 6.1x+3.9=68.56 | | x+110=140 | | 4(x+1)=4x+7 | | 6-2n+1=-2n+5 | | 12/m=5 | | (6x)+(x+26)=180 | | -2.25=r+-0.80 | | -0.75x-6-3.5x=1.4 | | (n/7)-2.4=-4.285 | | 2=10x+30 | | -8(4u-1)+12u=11(-2u-6) | | -21/4=r+(-4/5) | | x+(3x-12)+(3x+3x-12)+(3x+3x+3x-12)=87 | | (8x-23)=(6x+11) | | X^3+27/3x^2+x=0 |