-(4x-1)(3-x)=-11x+6

Simple and best practice solution for -(4x-1)(3-x)=-11x+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -(4x-1)(3-x)=-11x+6 equation:



-(4x-1)(3-x)=-11x+6
We move all terms to the left:
-(4x-1)(3-x)-(-11x+6)=0
We add all the numbers together, and all the variables
-(4x-1)(-1x+3)-(-11x+6)=0
We get rid of parentheses
-(4x-1)(-1x+3)+11x-6=0
We multiply parentheses ..
-(-4x^2+12x+x-3)+11x-6=0
We get rid of parentheses
4x^2-12x-x+11x+3-6=0
We add all the numbers together, and all the variables
4x^2-2x-3=0
a = 4; b = -2; c = -3;
Δ = b2-4ac
Δ = -22-4·4·(-3)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{13}}{2*4}=\frac{2-2\sqrt{13}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{13}}{2*4}=\frac{2+2\sqrt{13}}{8} $

See similar equations:

| 2n2+4n-96=0 | | 9x^2-48+68=0 | | 234/3=x | | 3/234=x | | 2a+2a=180 | | 2(5-3r)=3 | | 2(2y-3)=4y+5 | | 8x2=6x-1 | | 4x(12-x)=14 | | 2x•-6=x+10 | | 2/3x+9=4/3x-3 | | 2x-2(x-1)=3-(3x-1) | | 10x=4x+4 | | x-234=80 | | x8.05=1000000 | | 2x2+11x-63=0 | | -5-7=-6s | | 10c+2c=32 | | 2x2+22x-63=0 | | ƒ(x)=3x^2-12x-15 | | 6(2y+6)=(9+3y) | | 7-12=2y | | 3(x+2=15 | | 10x-4=2(4x+2 | | 6(x+2)=10x-2 | | 1/3x=-5/3x+5/4 | | 3(2x=4)+x=32 | | −27=-3w+24 | | 3x^2-17x-78=0 | | 80=10+3t | | 7=3g−2 | | 10x-4=2(4x+2) |

Equations solver categories