-(3x2)-(x-1)=-(2x-2)-(2x+4)

Simple and best practice solution for -(3x2)-(x-1)=-(2x-2)-(2x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -(3x2)-(x-1)=-(2x-2)-(2x+4) equation:



-(3x^2)-(x-1)=-(2x-2)-(2x+4)
We move all terms to the left:
-(3x^2)-(x-1)-(-(2x-2)-(2x+4))=0
We get rid of parentheses
-3x^2-x-(-(2x-2)-(2x+4))+1=0
We calculate terms in parentheses: -(-(2x-2)-(2x+4)), so:
-(2x-2)-(2x+4)
We get rid of parentheses
-2x-2x+2-4
We add all the numbers together, and all the variables
-4x-2
Back to the equation:
-(-4x-2)
We add all the numbers together, and all the variables
-3x^2-1x-(-4x-2)+1=0
We get rid of parentheses
-3x^2-1x+4x+2+1=0
We add all the numbers together, and all the variables
-3x^2+3x+3=0
a = -3; b = 3; c = +3;
Δ = b2-4ac
Δ = 32-4·(-3)·3
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{5}}{2*-3}=\frac{-3-3\sqrt{5}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{5}}{2*-3}=\frac{-3+3\sqrt{5}}{-6} $

See similar equations:

| 64x+4=57-7x | | 0=-8-9p^2 | | y=-1+7/9 | | -5(-2+5v)=3v+14 | | (w+3)^2-54=0 | | 2x+7/5=5 | | -2y+3=7y+19 | | 0=-8-9p2 | | 15=6y+ | | 6x-45=x-35 | | 14+6x=2x-6 | | x-3÷8=4 | | (d+3)2=7 | | 2x^2+36x-18=0 | | 7x−95=45 | | -6t−7=17 | | -6t−7=17t= | | 2(2d+3)=27 | | (x+29)+87=180 | | 7+x3=2x+13 | | 27x-9=36x | | 4x+7=+1+2(2x+3) | | -21+b=-b^2 | | 9(x+3)=11x=13 | | 3x-2*2=2x+4 | | 51/5x=132/5 | | 6(5t+4)=4(6t+5) | | x=7=12 | | 6(f+1)=24 | | 12x+3x+8+130=180 | | x=5=6 | | 10^15x=15,912 |

Equations solver categories