If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-(3/10)(x+1)=10
We move all terms to the left:
-(3/10)(x+1)-(10)=0
Domain of the equation: 10)(x+1)!=0We add all the numbers together, and all the variables
x∈R
-(+3/10)(x+1)-10=0
We multiply parentheses ..
-(+3x^2+3/10*1)-10=0
We multiply all the terms by the denominator
-(+3x^2+3-10*10*1)=0
We get rid of parentheses
-3x^2-3+10*10*1=0
We add all the numbers together, and all the variables
-3x^2+97=0
a = -3; b = 0; c = +97;
Δ = b2-4ac
Δ = 02-4·(-3)·97
Δ = 1164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1164}=\sqrt{4*291}=\sqrt{4}*\sqrt{291}=2\sqrt{291}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{291}}{2*-3}=\frac{0-2\sqrt{291}}{-6} =-\frac{2\sqrt{291}}{-6} =-\frac{\sqrt{291}}{-3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{291}}{2*-3}=\frac{0+2\sqrt{291}}{-6} =\frac{2\sqrt{291}}{-6} =\frac{\sqrt{291}}{-3} $
| 2x.6=9x+9 | | 13x+2=2x+38 | | -3(5k+3)=-6k | | 12x2x=44 | | 1)24-6p=-3(7+5p) | | 7m+5=-2+5-6m | | 4x+76=90 | | Y=2x÷x-1 | | x-+4=-9 | | 3(5x)+60=180 | | 6y+1=(-17 | | 3x+8+2x=20+x | | 3(5x)+60=90 | | -6x=2(2x+3) | | 7x+3=94x/24+12.25 | | 5w-12=52w= | | 6v-3.2=6.4 | | 0=5^-2x-10 | | (8x)=154 | | 0=5^2x | | z−464=187 | | q/23=11 | | q23=11 | | -9+m/3=3 | | 13t=169 | | x=17/2=2.3 | | 4(-6m+7)-3(1-8m)=8 | | 25n=925 | | 8x+60=90 | | -5.7=0.3x+19.2 | | ¾d+12=27 | | 0.025(q+20)=2.81 |