-(2/3)*(15x+3)=-3x-9

Simple and best practice solution for -(2/3)*(15x+3)=-3x-9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -(2/3)*(15x+3)=-3x-9 equation:



-(2/3)(15x+3)=-3x-9
We move all terms to the left:
-(2/3)(15x+3)-(-3x-9)=0
Domain of the equation: 3)(15x+3)!=0
x∈R
We add all the numbers together, and all the variables
-(+2/3)(15x+3)-(-3x-9)=0
We get rid of parentheses
-(+2/3)(15x+3)+3x+9=0
We multiply parentheses ..
-(+30x^2+2/3*3)+3x+9=0
We multiply all the terms by the denominator
-(+30x^2+2+3x*3*3)+9*3*3)=0
We add all the numbers together, and all the variables
-(+30x^2+2+3x*3*3)=0
We get rid of parentheses
-30x^2-3x*3*3-2=0
Wy multiply elements
-30x^2-27x*3-2=0
Wy multiply elements
-30x^2-81x-2=0
a = -30; b = -81; c = -2;
Δ = b2-4ac
Δ = -812-4·(-30)·(-2)
Δ = 6321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6321}=\sqrt{49*129}=\sqrt{49}*\sqrt{129}=7\sqrt{129}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-81)-7\sqrt{129}}{2*-30}=\frac{81-7\sqrt{129}}{-60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-81)+7\sqrt{129}}{2*-30}=\frac{81+7\sqrt{129}}{-60} $

See similar equations:

| (3x)+(7x+10)=90 | | -6g+34=12 | | r÷187=9 | | y=4(-12)+6 | | 2x4+8x2+8=0 | | n/12=9/8 | | 2x-(4x+6)=18 | | 3c+c=4c | | 3(102x)=45 | | 4t-39=t | | 2y=3y+2+1 | | 3=r+19 | | 12n^2-8n+4=0 | | |2y|=|3y+2|+1 | | G(x)=-1.2(5)^x | | 18Xa=126 | | x=3(-6)+27 | | (2x)+(4x-18)+(4x-22)=360 | | (-8,0)m=-4 | | (5t^2+9)^2=15 | | 4x40=x+50 | | 72x^2-336x+150=0 | | 60+25x=55x | | 2+3n=28 | | 7-x/2=1 | | -3(7x-3)+4=-21x+13 | | y=50(1+25)^(5) | | |5−2x|+6=14 | | 6k=7/5 | | 8-(1+2x)=3 | | 8h-10h=+25 | | -6(1+7k)+7(1+6k=-2 |

Equations solver categories