-(1/2)(x+4)=16

Simple and best practice solution for -(1/2)(x+4)=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -(1/2)(x+4)=16 equation:



-(1/2)(x+4)=16
We move all terms to the left:
-(1/2)(x+4)-(16)=0
Domain of the equation: 2)(x+4)!=0
x∈R
We add all the numbers together, and all the variables
-(+1/2)(x+4)-16=0
We multiply parentheses ..
-(+x^2+1/2*4)-16=0
We multiply all the terms by the denominator
-(+x^2+1-16*2*4)=0
We get rid of parentheses
-x^2-1+16*2*4=0
We add all the numbers together, and all the variables
-1x^2+127=0
a = -1; b = 0; c = +127;
Δ = b2-4ac
Δ = 02-4·(-1)·127
Δ = 508
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{508}=\sqrt{4*127}=\sqrt{4}*\sqrt{127}=2\sqrt{127}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{127}}{2*-1}=\frac{0-2\sqrt{127}}{-2} =-\frac{2\sqrt{127}}{-2} =-\frac{\sqrt{127}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{127}}{2*-1}=\frac{0+2\sqrt{127}}{-2} =\frac{2\sqrt{127}}{-2} =\frac{\sqrt{127}}{-1} $

See similar equations:

| 2^2x^+1-33(2^x)+16=0 | | 2w-14w=84 | | 16+a=-1 | | 2x-3=4.5(x-2) | | 21​ (2−4x)+2x=13 | | -6+2h=-10 | | 3m-2=2-13 | | 5(a+1)=-7 | | 4/3x+1=-3 | | 56x-5445=100x | | -6-7c=-7c+6 | | (2/5)m+1=7 | | 274=-2z= | | -62=5(8+8x)-2(-7x-3 | | .1(x+11)=-16+2x | | 6x+8-6=10 | | x=2(1/4) | | 5x+5=5x+60 | | 3t.t-8=10 | | 56x-5445=57x | | x+4+6x-4=2x+8 | | 4d+7+2d=2(3d-7 | | 7/4x=-7 | | -3x-4(8x+1)=4(7×-1) | | -100=5(1-7a) | | 27m−17=314 | | 2x-12=-8x+27 | | 56x-5445=56x | | 6-7k=-36 | | 5x+23=14x-31 | | y-4=10y | | 47/8=47/8b |

Equations solver categories