If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-(1)/(2)x+8=6x-12-(13)/(2)x
We move all terms to the left:
-(1)/(2)x+8-(6x-12-(13)/(2)x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 2x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-1/2x-(6x-13/2x-12)+8=0
We get rid of parentheses
-1/2x-6x+13/2x+12+8=0
We multiply all the terms by the denominator
-6x*2x+12*2x+8*2x-1+13=0
We add all the numbers together, and all the variables
-6x*2x+12*2x+8*2x+12=0
Wy multiply elements
-12x^2+24x+16x+12=0
We add all the numbers together, and all the variables
-12x^2+40x+12=0
a = -12; b = 40; c = +12;
Δ = b2-4ac
Δ = 402-4·(-12)·12
Δ = 2176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2176}=\sqrt{64*34}=\sqrt{64}*\sqrt{34}=8\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-8\sqrt{34}}{2*-12}=\frac{-40-8\sqrt{34}}{-24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+8\sqrt{34}}{2*-12}=\frac{-40+8\sqrt{34}}{-24} $
| 2x+26+3=x+20 | | 2x+5x-21=28 | | 8x-7-6x=8-3x | | 2x+18=3x-14 | | 2-7x+4=3x+1-5x | | 1/4y+1/3=2/3 | | 90=g(1/2) | | 2x+4=-9x-18 | | -5-4d=13 | | (2/7)=2m-(4/7) | | n-352.2=1010.6 | | 7(n-1)+7=7(n+2) | | -m-5=3m-4m | | -6Y+8=y+9-7-1 | | (-14.3)+t=27.8 | | 37+67+x+x=90 | | 7x+42=2x+12,x= | | -6+2(2z+16)=9 | | 48=3(x-1)^2 | | 6=14−2x | | 3/4(8/3x-8)-3=1/2(6x+8) | | 4.2x+1225=17.64+35x | | 50+18x=27x+5 | | 5g+23=88 | | -3t+9=27 | | 4.2+1225=17.64+35x | | 69=11f+3 | | (7x-9)+7x=90 | | 2(3y-5)=8-6y,y= | | 50+18x=17x+5 | | X2+12x=640 | | 8+4/3x=1-2 |