-(-5-6x)=4x(5x+3)

Simple and best practice solution for -(-5-6x)=4x(5x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -(-5-6x)=4x(5x+3) equation:



-(-5-6x)=4x(5x+3)
We move all terms to the left:
-(-5-6x)-(4x(5x+3))=0
We add all the numbers together, and all the variables
-(-6x-5)-(4x(5x+3))=0
We get rid of parentheses
6x-(4x(5x+3))+5=0
We calculate terms in parentheses: -(4x(5x+3)), so:
4x(5x+3)
We multiply parentheses
20x^2+12x
Back to the equation:
-(20x^2+12x)
We get rid of parentheses
-20x^2+6x-12x+5=0
We add all the numbers together, and all the variables
-20x^2-6x+5=0
a = -20; b = -6; c = +5;
Δ = b2-4ac
Δ = -62-4·(-20)·5
Δ = 436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{436}=\sqrt{4*109}=\sqrt{4}*\sqrt{109}=2\sqrt{109}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{109}}{2*-20}=\frac{6-2\sqrt{109}}{-40} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{109}}{2*-20}=\frac{6+2\sqrt{109}}{-40} $

See similar equations:

| 12(3x-2)=-54 | | 5/4=v+4/9 | | 12(3x-2=-54 | | y=-4|-2+2| | | -4(8t+72)+46t=3t | | 0.56=r | | .20x+.25(50)=28.5 | | 6x-2x=104-48 | | 0.5n=-22 | | 0.5n=-222 | | 40(30x-100)=200+75x | | 2(6x+4)=6x-24 | | 0.125x=-4 | | 2x5=10+92 | | 2(x+2/3)=(x-4) | | 1/3+4/7÷3/10=a | | 6x^+15=19x | | .9b=-108 | | -y^2-4y+8=0 | | 8(20r-40)=3(20r-80) | | 14z-16-z+4=0 | | 14z-6-z+4=0 | | -4(6x+12)=(6x+36) | | X-(2x)=3500 | | -4(6x+12)=1(6x+36) | | y–13=24 | | 6(j−84)=78 | | 2/9x=-5 | | 2(s+9)=62 | | X-(x.2)=3500 | | 6z+z=6z+5 | | -9m+3=-159 |

Equations solver categories