If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(y-7)y=0
We multiply parentheses
y^2-7y=0
a = 1; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·1·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*1}=\frac{0}{2} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*1}=\frac{14}{2} =7 $
| 7p-11=+p-15 | | -17x=544 | | -3x-6(2x-1)=6 | | -7(x+5=-91 | | 4(2x+5)=-4x-8 | | 82.5x+10=301.19 | | 82.5+10x=301.19 | | -16b=384 | | 279=7-8(6a+8) | | -5x+7-3x-9=54 | | 29x=-435 | | ∣10c∣=30 | | y×=49 | | 5x-2-2x+4=18 | | 3(a-1.2)=a+3.4 | | 11+m/4=-41 | | -13=b+1 | | -4b=-2b+14 | | 8(x-2)=x+3 | | 4x-8÷17=4 | | -2(2+n)=-4+5n | | -5(b+2)-14=-59 | | -5(b+2-14=-59 | | 9z+4(4+z)=42 | | 63=-7w-2w-18 | | d=0.5+15 | | -2x=-(x+4) | | -4(-x-2)-2x+5=−4(−x−2)−2x+5 | | 63=-7w-2w-18w | | 8(d-5)=-48 | | 2(w-11)=-14 | | -8(7-3k)=-128 |