If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(y+29)40(2y)=180
We move all terms to the left:
(y+29)40(2y)-(180)=0
We multiply parentheses
402y^2+11658y-180=0
a = 402; b = 11658; c = -180;
Δ = b2-4ac
Δ = 116582-4·402·(-180)
Δ = 136198404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136198404}=\sqrt{36*3783289}=\sqrt{36}*\sqrt{3783289}=6\sqrt{3783289}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11658)-6\sqrt{3783289}}{2*402}=\frac{-11658-6\sqrt{3783289}}{804} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11658)+6\sqrt{3783289}}{2*402}=\frac{-11658+6\sqrt{3783289}}{804} $
| 225+250x=275=200x | | X^3-9x^2+20x-12=12 | | 2(d–20)=-4 | | 5v-16=84 | | -5-2x=x+4 | | -7b+19=5 | | 4x-8=10x+9 | | 37-2x=5-2x | | a2+3=8 | | -x-6=2x+15 | | -6x-6=4x-46 | | 5d+4=9 | | 20.00+2.50x=11.00+3.75x | | 20(b+1)=20 | | 480.34=200+1.7x | | -12+2x=-3x+23 | | (1/x+3)=5 | | {100-(1/3)(3^0.5)(x^0.5)=-(60-0.5x)} | | (2/x)=(4/2x)-2 | | -3x-2+7x=34 | | -14+3x=-x+14 | | C=39.48+0.50x | | 4x2+8x–32=0 | | 5n^+2n=0 | | -17=2x-5x-5 | | 6x+2(40)=90 | | -4y+3/2=-7/3y-5/3 | | 4m^2+10=38 | | -x-3=3-2x | | 2x-1/3-x-2/5=x/2 | | 3(x-3)+3x=4x-19 | | -5(7n-6)+2n=n |