If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(y)(y+3)=54
We move all terms to the left:
(y)(y+3)-(54)=0
We multiply parentheses
y^2+3y-54=0
a = 1; b = 3; c = -54;
Δ = b2-4ac
Δ = 32-4·1·(-54)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-15}{2*1}=\frac{-18}{2} =-9 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+15}{2*1}=\frac{12}{2} =6 $
| 7x+5x+2x+12=180 | | 12t^2-23t=0 | | 828.25n=8.20n | | 5r+8r-13+9-r=-22 | | 4=1.05^t | | -5.3=2.2v=-8.6 | | Y-3=4x+5 | | X2+11x+10=0 | | (x-17)^2-(45)=0 | | -7(3n+6)=-25+8n | | 14-w/8=6w/8-21 | | (x-17)^2=45 | | 7(x-2)-7(4-x)=0 | | 3x^2-46x-240=0 | | -4x-2(8x+1)=-(-2x+10) | | 7y-8(2y-3)=3 | | 5.6=1.1p=1.2 | | 3/4x^2-x+13/8=0 | | x2+4x=9x | | 6x/4=15 | | 3y-5-5y=3 | | c/5.3=8.3=11.3 | | 9^x-3=250 | | 25=2c/9 | | X=-5/3(5-y) | | 2p=7p=54 | | X+2/6=6/x+2 | | -84/g=3 | | 8h+7-5h-6h=-8 | | b+7/9=17/18 | | 2/3h-1/3h+11=9 | | 8y=3y=44 |