(x2-2x)2+3x2-6x=-2

Simple and best practice solution for (x2-2x)2+3x2-6x=-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x2-2x)2+3x2-6x=-2 equation:



(x2-2x)2+3x^2-6x=-2
We move all terms to the left:
(x2-2x)2+3x^2-6x-(-2)=0
We add all the numbers together, and all the variables
3x^2+(+x^2-2x)2-6x-(-2)=0
We add all the numbers together, and all the variables
3x^2+(+x^2-2x)2-6x+2=0
We multiply parentheses
3x^2+2x^2-4x-6x+2=0
We add all the numbers together, and all the variables
5x^2-10x+2=0
a = 5; b = -10; c = +2;
Δ = b2-4ac
Δ = -102-4·5·2
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{15}}{2*5}=\frac{10-2\sqrt{15}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{15}}{2*5}=\frac{10+2\sqrt{15}}{10} $

See similar equations:

| 30=22x+80 | | w+279=425 | | 21x+4+5x+3=163 | | 25+2x=57 | | 26=s/7 | | s^2+0.5s+2=0 | | 5(x+4)=-2(2x+1) | | 5/12x=14/12x | | 8a-9=6a-3 | | c+250=513 | | -3x+12=-6x-30 | | 1/6x=216 | | 10=4s-2s | | 3d-9=-1.74 | | (3/4)x+6=30 | | f=88−70 | | 6x-2+-1+29x=172 | | 7w-(6w)+1=10-4 | | g=87+4 | | 13v=66 | | -5/4w=35 | | 3d−9=-1.74 | | 2/3y-4/5=3/8 | | k=39+45 | | 9x=-3x+13 | | 1.99x=4 | | 2k+2=-13-13 | | 8x+20=11x+11 | | 3x+9=1x+4 | | 15x-7=15x-7 | | y=18+13 | | 3x+8=1x+9 |

Equations solver categories