(x2+52=132)

Simple and best practice solution for (x2+52=132) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x2+52=132) equation:



(x2+52=132)
We move all terms to the left:
(x2+52-(132))=0
We add all the numbers together, and all the variables
(+x^2+52-132)=0
We get rid of parentheses
x^2+52-132=0
We add all the numbers together, and all the variables
x^2-80=0
a = 1; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·1·(-80)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*1}=\frac{0-8\sqrt{5}}{2} =-\frac{8\sqrt{5}}{2} =-4\sqrt{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*1}=\frac{0+8\sqrt{5}}{2} =\frac{8\sqrt{5}}{2} =4\sqrt{5} $

See similar equations:

| 3.1a-2,2=-9.02 | | 9x+72=21 | | 9(5x+5)=10(6x+9) | | 8-6x=10+2x | | 5(7x+5)=5(8x+6) | | 3/2p-12=-10 | | 8(7x+10)=6(9x+6) | | 3(4x-5)+5=10x+2x+4 | | 3(4x-5)+5=10 | | 3(4x-5)+5=10x+2x+10 | | 9(10x+5)=9(8x+7) | | 0.02x-11.25=0.4(x-6) | | 9(10x+5)=9(8x | | 3(4x-5)+5=5x+3x+10 | | 31=z+25.5 | | -10+x/4+5=7x-5/3 | | 8(7x+6)=10(5x+9) | | 8(8x+9)=7(9x+6) | | 8x-28x+8=180 | | 8x-2=8x+8=180 | | 3(c-6)=33 | | v^+44=15v | | r^=5r+66 | | 0.2n=0.09 | | (9+m)÷3=4 | | M=p(-3,-2 | | -6x-6=-4x+6 | | M=2p(3,2) | | 10-5h=2-3h | | 3q=7=7q-13 | | -173=-8(1-5k)-5 | | 7m÷5=14 |

Equations solver categories