(x2+4)+(-5*6)=22

Simple and best practice solution for (x2+4)+(-5*6)=22 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x2+4)+(-5*6)=22 equation:



(x2+4)+(-5*6)=22
We move all terms to the left:
(x2+4)+(-5*6)-(22)=0
determiningTheFunctionDomain (x2+4)-22+(-5*6)=0
We add all the numbers together, and all the variables
(+x^2+4)-22+(-30)=0
We add all the numbers together, and all the variables
(+x^2+4)-52=0
We get rid of parentheses
x^2+4-52=0
We add all the numbers together, and all the variables
x^2-48=0
a = 1; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·1·(-48)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*1}=\frac{0-8\sqrt{3}}{2} =-\frac{8\sqrt{3}}{2} =-4\sqrt{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*1}=\frac{0+8\sqrt{3}}{2} =\frac{8\sqrt{3}}{2} =4\sqrt{3} $

See similar equations:

| 4(2y-2)=21 | | 6(-y-6)+9y=-81 | | 8=w-6 | | -16+3x=-24=6x | | 6x+10=10x+3 | | |4w|=|1/4w| | | 1/2(2x+32)=5x | | 1x-1x=x | | y+43=243+654 | | (5x+7)/4=6 | | 0.9x-1.6=-5.2 | | 3x13=2x-4 | | 1/6x+5/2=1/3 | | x³-3x²-10x=0 | | 40x=-50x+100 | | 9x^2+48x=0 | | 31=200-16x^2 | | x×x-25=0 | | -4+7(x-5)=15x+2-8x | | 0.05(x+40)-0.08(x-20)=5.4 | | 0.2x(x+90)+0.2x=22 | | 5(x+3)-2=20-2x-7+7x | | (8x-4)/2=1 | | 3-(-8j+6)=-6j+1 | | 10+8(2x+4)=7-(4x+9) | | 3-(-8j+6)=6j+1 | | x+23=74+12 | | 18x+12/3=-8 | | 1,5^x-2,25=0 | | 4(t)=-4.9(t)^2+442.225 | | p-(-3.2)=5.8 | | (3*x+8)^2-64=0 |

Equations solver categories