(x2)-10=64

Simple and best practice solution for (x2)-10=64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x2)-10=64 equation:



(x2)-10=64
We move all terms to the left:
(x2)-10-(64)=0
We add all the numbers together, and all the variables
x^2-74=0
a = 1; b = 0; c = -74;
Δ = b2-4ac
Δ = 02-4·1·(-74)
Δ = 296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{296}=\sqrt{4*74}=\sqrt{4}*\sqrt{74}=2\sqrt{74}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{74}}{2*1}=\frac{0-2\sqrt{74}}{2} =-\frac{2\sqrt{74}}{2} =-\sqrt{74} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{74}}{2*1}=\frac{0+2\sqrt{74}}{2} =\frac{2\sqrt{74}}{2} =\sqrt{74} $

See similar equations:

| 4x^+6x=-9 | | -64+24=-3x+11x | | 4s+27=6s+25 | | (t+3)^3−49(t+3)=0 | | -9=-3x+6x+3 | | 16s-36=13s+42 | | 13u+34=u+46 | | -66+7x=-150 | | .007(7-k)+.04(k-2)=1 | | -66-7x=-150 | | 3v-35+2v=180 | | 10-(y-6)=7y | | 16x+4=4(x-2) | | 16=-7x+5(x+6) | | .005(9-k)+.06(k-4)=1 | | 4/x-6=5x | | 7m^2+43m-42=0 | | 5x-4=x-16 | | .005(7-k)+.01(k-8)=1 | | 36/4=y | | 3s+20=13s | | 3y-45=y-7 | | 5s=s+4 | | -2-12=4x+17-3x | | 1.7-y=17 | | v=2v-80 | | .003(9-k)+.02(k-8)=1 | | -2x+5+3x=-25+23 | | 0.2=y/4.3 | | p+74+4p-70=180 | | (6x)+5=12 | | -3+2=m-10 |

Equations solver categories