If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x/x-9)+(x-6/7x+9)=1
We move all terms to the left:
(x/x-9)+(x-6/7x+9)-(1)=0
Domain of the equation: x-9)!=0
x∈R
Domain of the equation: 7x+9)!=0We get rid of parentheses
x∈R
x/x+x-6/7x-9+9-1=0
Fractions to decimals
-6/7x+x-9+9-1+1=0
We multiply all the terms by the denominator
x*7x-9*7x+9*7x-1*7x+1*7x-6=0
Wy multiply elements
7x^2-63x+63x-7x+7x-6=0
We add all the numbers together, and all the variables
7x^2-6=0
a = 7; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·7·(-6)
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{42}}{2*7}=\frac{0-2\sqrt{42}}{14} =-\frac{2\sqrt{42}}{14} =-\frac{\sqrt{42}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{42}}{2*7}=\frac{0+2\sqrt{42}}{14} =\frac{2\sqrt{42}}{14} =\frac{\sqrt{42}}{7} $
| 7x=1/2x^2+24 | | 5=5+9/17y | | 3x+4+2x+5=-34 | | (x/x-9)+(x-6/7x+90=1 | | 9r+4=13 | | 2x+6x+-17x+2=20 | | 8y-9+4=11 | | 2.8-0.6(x+2)=2x=2(x-0.2) | | -2(-3x+-5)=28 | | x/x-9+x-6/7x+9=1 | | -7(-2x+4)=0 | | 2x+7=37.85 | | 5u+8=2u | | 15x-7-14x=-1 | | 4(c-14)=-52 | | -2(x+-13)=10 | | 5x+8=-17x= | | 343.4y-5.2=3y+2 | | 2(x+8)÷3=16 | | 2x-5=2x-7 | | 70=17x-22x+95 | | 11(10+x)=132 | | 1/8x-7=-6 | | x÷8=66 | | -1=3+x | | 5(c-12)=-15 | | 2y+2=2y+1+ | | 44+x=354 | | 16x^2-288x+1296=0 | | z/4+3=-29 | | 2e+2=5+e | | 2a-4=2a-2 |