If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (x + -1y)(x + -1y)(x + -1y) = 0 Multiply (x + -1y) * (x + -1y) (x(x + -1y) + -1y * (x + -1y))(x + -1y) = 0 ((x * x + -1y * x) + -1y * (x + -1y))(x + -1y) = 0 Reorder the terms: ((-1xy + x2) + -1y * (x + -1y))(x + -1y) = 0 ((-1xy + x2) + -1y * (x + -1y))(x + -1y) = 0 (-1xy + x2 + (x * -1y + -1y * -1y))(x + -1y) = 0 (-1xy + x2 + (-1xy + 1y2))(x + -1y) = 0 Reorder the terms: (-1xy + -1xy + x2 + 1y2)(x + -1y) = 0 Combine like terms: -1xy + -1xy = -2xy (-2xy + x2 + 1y2)(x + -1y) = 0 Multiply (-2xy + x2 + 1y2) * (x + -1y) (-2xy * (x + -1y) + x2(x + -1y) + 1y2 * (x + -1y)) = 0 ((x * -2xy + -1y * -2xy) + x2(x + -1y) + 1y2 * (x + -1y)) = 0 Reorder the terms: ((2xy2 + -2x2y) + x2(x + -1y) + 1y2 * (x + -1y)) = 0 ((2xy2 + -2x2y) + x2(x + -1y) + 1y2 * (x + -1y)) = 0 (2xy2 + -2x2y + (x * x2 + -1y * x2) + 1y2 * (x + -1y)) = 0 Reorder the terms: (2xy2 + -2x2y + (-1x2y + x3) + 1y2 * (x + -1y)) = 0 (2xy2 + -2x2y + (-1x2y + x3) + 1y2 * (x + -1y)) = 0 (2xy2 + -2x2y + -1x2y + x3 + (x * 1y2 + -1y * 1y2)) = 0 (2xy2 + -2x2y + -1x2y + x3 + (1xy2 + -1y3)) = 0 Reorder the terms: (2xy2 + 1xy2 + -2x2y + -1x2y + x3 + -1y3) = 0 Combine like terms: 2xy2 + 1xy2 = 3xy2 (3xy2 + -2x2y + -1x2y + x3 + -1y3) = 0 Combine like terms: -2x2y + -1x2y = -3x2y (3xy2 + -3x2y + x3 + -1y3) = 0 Solving 3xy2 + -3x2y + x3 + -1y3 = 0 Solving for variable 'x'. The solution to this equation could not be determined.
| 8x-1600=40160(x) | | 12+11x=15-x | | p-(-1)=(-7*-7) | | 4(2x-7+0.5x)+5x-3=11 | | 4a(6+12)*4+6b*64= | | -(x-5)+11=7x-(4) | | y=3.7x-3.3 | | -x/9=-7 | | F=0.30(1)(9.8) | | 2x+4y+2=3y+5 | | .80F=.30(1)(9.8) | | y=2.1x+3.4 | | x^4-32x^2+1=0 | | yx-6+10=7 | | 45=-9/5x | | 7x+20x=16x | | 7x-5=-8x+25 | | 5(x+7)-3x=2(x-5)+4 | | 6x+8-4x=7x+9 | | 6(7x+1)=42x+6 | | 5-7(x+1)=2 | | 2w+3w=30 | | -50x-(-50)=0 | | 4a-5b/6a/7b | | 5-7(x+1)=1 | | x+2.5=6.8 | | x^3-12x-38=0 | | 0.06(y-4)+0.04y=0.02y-0.7 | | 27-2x-7=3x-x | | 27-2x-7=3x-3 | | 8=1.5+b | | 3=8+b |