(x-8)(x-5)=x-1

Simple and best practice solution for (x-8)(x-5)=x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-8)(x-5)=x-1 equation:



(x-8)(x-5)=x-1
We move all terms to the left:
(x-8)(x-5)-(x-1)=0
We get rid of parentheses
(x-8)(x-5)-x+1=0
We multiply parentheses ..
(+x^2-5x-8x+40)-x+1=0
We add all the numbers together, and all the variables
(+x^2-5x-8x+40)-1x+1=0
We get rid of parentheses
x^2-5x-8x-1x+40+1=0
We add all the numbers together, and all the variables
x^2-14x+41=0
a = 1; b = -14; c = +41;
Δ = b2-4ac
Δ = -142-4·1·41
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-4\sqrt{2}}{2*1}=\frac{14-4\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+4\sqrt{2}}{2*1}=\frac{14+4\sqrt{2}}{2} $

See similar equations:

| x+4-6x=-6-55x-2 | | 1/2x+4=3/4-4x | | 7a−4a+3a=12 | | -24=3(8x+8) | | 3-(2x-5)=24 | | 3x+4=9x−8 | | 4p(p+5)=0 | | 5m-21=54 | | 8x-4=7x=-3 | | 1/3n+4=7 | | 11-2x=2x-9 | | -6=2(10x+7) | | 14g=12 | | 6y-3=17-y | | -15=3/4x+9 | | 6x-12+6x-12=90 | | 3x+11=-Y | | 4(3-x)+6=3x+12+2x | | 40=(x+9) | | 175m-75+47750=50000-150m | | 4x(x+5)-11=16x+17x+1 | | -3.8x^2+2.5x=0 | | 3w-8-1=5+2w-w+2 | | 4r^2-r+13=6 | | -8-x-4x=22 | | 5-1=3q+17 | | 15(3-a)+8a=87 | | 17x=13-9 | | -3(-2+2)=6(x+3) | | 2(4h+3)+7=37 | | 8x+15=90 | | 7(-6+8)-8=7p-1 |

Equations solver categories