(x-6)(x+9)-x=2(x+23)

Simple and best practice solution for (x-6)(x+9)-x=2(x+23) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-6)(x+9)-x=2(x+23) equation:



(x-6)(x+9)-x=2(x+23)
We move all terms to the left:
(x-6)(x+9)-x-(2(x+23))=0
We add all the numbers together, and all the variables
-1x+(x-6)(x+9)-(2(x+23))=0
We multiply parentheses ..
(+x^2+9x-6x-54)-1x-(2(x+23))=0
We calculate terms in parentheses: -(2(x+23)), so:
2(x+23)
We multiply parentheses
2x+46
Back to the equation:
-(2x+46)
We get rid of parentheses
x^2+9x-6x-1x-2x-54-46=0
We add all the numbers together, and all the variables
x^2-100=0
a = 1; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·1·(-100)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*1}=\frac{-20}{2} =-10 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*1}=\frac{20}{2} =10 $

See similar equations:

| -7y(y+6)=-10y-45 | | 5x-12=3x-15 | | 11x+12=10x+25 | | 3=k4 | | 8x+12=10x+25 | | 3x+5+2x+8=90 | | 18-3x=3x2 | | 40=n^2-3n | | (4x+2)×3=30 | | 195=16t^2+120t | | 4x+2×3=30 | | x=4(5÷7)-22 | | x=4(5/7)-22 | | 3y-2+4y-22=-19 | | 11x^2+2x+5=-7 | | X^2-5x+84=0 | | 5(x+1)+5(x-1)=6 | | 210/s=500 | | 2(w-6)=5w-12 | | f/13–4=-3 | | 5x-4+2x+11=-32 | | 16^x=1/ | | 16(k+7)=8k+160 | | 2x-5(x-2)=-9+3x-17 | | 8j-5=-j+76 | | 6+4-2=10+4x-8 | | 36=y-0.1y | | X^-45x+324=0 | | 7y+18=3y+2 | | 8x+7x-48=96-9x | | 3x+5=-2x+25 | | 11v-3=v+67 |

Equations solver categories