(x-6)(2x+1)=(x-6)(x-4)

Simple and best practice solution for (x-6)(2x+1)=(x-6)(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-6)(2x+1)=(x-6)(x-4) equation:



(x-6)(2x+1)=(x-6)(x-4)
We move all terms to the left:
(x-6)(2x+1)-((x-6)(x-4))=0
We multiply parentheses ..
(+2x^2+x-12x-6)-((x-6)(x-4))=0
We calculate terms in parentheses: -((x-6)(x-4)), so:
(x-6)(x-4)
We multiply parentheses ..
(+x^2-4x-6x+24)
We get rid of parentheses
x^2-4x-6x+24
We add all the numbers together, and all the variables
x^2-10x+24
Back to the equation:
-(x^2-10x+24)
We get rid of parentheses
2x^2-x^2+x-12x+10x-6-24=0
We add all the numbers together, and all the variables
x^2-1x-30=0
a = 1; b = -1; c = -30;
Δ = b2-4ac
Δ = -12-4·1·(-30)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-11}{2*1}=\frac{-10}{2} =-5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+11}{2*1}=\frac{12}{2} =6 $

See similar equations:

| 19j+3j+5j-24j=18 | | 17=31-x | | Y=50+150x | | 2x.9=2.3.5+23 | | 200=3X+y | | 2m-4-8m+9=10m.6+m-12 | | (4.4-7y)-3y/2=0 | | 4m^2+5m+9=0 | | 5k+-3=0 | | 13(x+10)=30 | | 30x-(3/2)x^2=0 | | C+s=9 | | x-0.7x=0.2 | | 1/2(3x+2)-1/5(x-2)=x+5 | | 5x^2-4x+8=(x) | | 30/75=x/160 | | -18=-6/5y | | 31x+7-7.4x=1.5x-6(x-3/2) | | s+24=61/2 | | F(4)=1x-3 | | 5m+16-7=8 | | 6x+4+52=x | | (33k-9)-(20k+4)=0 | | -4h=3h+21 | | x2+2x=10x | | -3/4+p=1/6 | | (15x/100)+x=2760 | | M3-2m2=-m | | 18x2-9=-21x | | 3y2-18y=-27 | | S=4s-774 | | -3n+4(6n-8)=21n-32 |

Equations solver categories