If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-5)x=176
We move all terms to the left:
(x-5)x-(176)=0
We multiply parentheses
x^2-5x-176=0
a = 1; b = -5; c = -176;
Δ = b2-4ac
Δ = -52-4·1·(-176)
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-27}{2*1}=\frac{-22}{2} =-11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+27}{2*1}=\frac{32}{2} =16 $
| 50=100-6x-8 | | 0(x)=(-x)+3 | | 8x-10-5x=11 | | 2×(x+3)=12 | | x/10+2=1 | | 8p−3=3p+22 | | 6q+10=5q+17 | | x/12=5.7 | | (x–3)∙2=130 | | X^2+(x^2)=72 | | 6x-9=4x- | | 4.9t^2+9t-450=0 | | 2r/9=9/(2r-3) | | 4^(9-3x)=64 | | a^2-10a-30=0 | | I=119x-237,524 | | 4w/1=1 | | 4-5m=5 | | (2x+2)=84 | | -63-14x=-84x | | X+(2x+2)=84 | | 2.2=3x-5.3 | | 7x-4=-2x+6 | | 8x+10=4x+20 | | 8x+10=4x+35 | | 8x+10=4x+40 | | 5(3+6x)-3=132 | | 5(3+6x)-3=32 | | 12y-12=9 | | X-18y=0 | | 20x+10=30x+20 | | 20x+5=30x+20 |