If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-5)(x-40)=128
We move all terms to the left:
(x-5)(x-40)-(128)=0
We multiply parentheses ..
(+x^2-40x-5x+200)-128=0
We get rid of parentheses
x^2-40x-5x+200-128=0
We add all the numbers together, and all the variables
x^2-45x+72=0
a = 1; b = -45; c = +72;
Δ = b2-4ac
Δ = -452-4·1·72
Δ = 1737
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1737}=\sqrt{9*193}=\sqrt{9}*\sqrt{193}=3\sqrt{193}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-3\sqrt{193}}{2*1}=\frac{45-3\sqrt{193}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+3\sqrt{193}}{2*1}=\frac{45+3\sqrt{193}}{2} $
| u/7=-26 | | 9x-3=-75 | | (4x+9)+(3x+8)+(6x+7)=180 | | 3y÷4-2=14 | | 15x-33=72 | | 1x+7=6x+5 | | x^2+x+552=0 | | 6b–1=2⁄3b+11 | | y/5-16=22 | | 26=u/2+13 | | 6(3z-2)+4(z-5)=78 | | 3x+12=5x–10 | | V=π2h | | 9×+4p=6×+5p | | 7t+8=-t+16 | | 4(+m+9)=-2(m-5)+2 | | 3x+13-x=8+4x-7 | | 4x)2-9=71 | | 1.1+3/4x+2=3.1+3/4 | | 4p-22=3p-11 | | (x–3)2+2(x–3)–8=0 | | X+1=0;x= | | 3/2y=54 | | 4x=100;x= | | X+3x=2+4;x= | | 9y=18y | | S=120t-16t² | | X+5=10;x= | | 9/10=15/x | | 4x2-9=71 | | –x+5=4x–15 | | 21/12=n/28 |