(x-5)(x+4)=(x-5)(3x+12)

Simple and best practice solution for (x-5)(x+4)=(x-5)(3x+12) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-5)(x+4)=(x-5)(3x+12) equation:



(x-5)(x+4)=(x-5)(3x+12)
We move all terms to the left:
(x-5)(x+4)-((x-5)(3x+12))=0
We multiply parentheses ..
(+x^2+4x-5x-20)-((x-5)(3x+12))=0
We calculate terms in parentheses: -((x-5)(3x+12)), so:
(x-5)(3x+12)
We multiply parentheses ..
(+3x^2+12x-15x-60)
We get rid of parentheses
3x^2+12x-15x-60
We add all the numbers together, and all the variables
3x^2-3x-60
Back to the equation:
-(3x^2-3x-60)
We get rid of parentheses
x^2-3x^2+4x-5x+3x-20+60=0
We add all the numbers together, and all the variables
-2x^2+2x+40=0
a = -2; b = 2; c = +40;
Δ = b2-4ac
Δ = 22-4·(-2)·40
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{324}=18$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-18}{2*-2}=\frac{-20}{-4} =+5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+18}{2*-2}=\frac{16}{-4} =-4 $

See similar equations:

| 6k-25=7-25k | | w=(21-15)/2 | | 5x+2(1-x)=(2x-1 | | −2x=60 | | d=70(4)^2 | | 11m-8=6+22 | | d=704^2 | | 6x​=−4 | | 14x+6=25+7x-4 | | 24(¼x+⅓)=3x+17 | | 2/4a+1/4a-8=7 | | f=9(30)/5+32 | | 4-(3x-2)=-5(x-3)-(4x-3) | | 5x−10=2(2x−3) | | 4/5x-6=7-1/2x | | 3(x-4)=14-2(x+3) | | 2(x+5)-5x=9 | | –4.98+5.7k=6.3k | | 10=-11+3(x+5) | | 8c-7=3c-7+5c | | 8x–9=–3x+2 | | 9x=-3(2x+5) | | 45=5-8b | | 9.89+2.9w=–9.07−1.2w−7.69 | | 6x^2+12x−48=0 | | 9x-18=2x+3 | | 4v=2v+2 | | 42×63=y×54 | | 4(3x+9)=14+2 | | 3(u-8)-1=-5(-3u+7)-4u | | 0=-2+n/4 | | |3h+1=7h |

Equations solver categories