(x-5)(45-x-5)=4(45-x-5)

Simple and best practice solution for (x-5)(45-x-5)=4(45-x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-5)(45-x-5)=4(45-x-5) equation:



(x-5)(45-x-5)=4(45-x-5)
We move all terms to the left:
(x-5)(45-x-5)-(4(45-x-5))=0
We add all the numbers together, and all the variables
(x-5)(-1x+40)-(4(-1x+40))=0
We multiply parentheses ..
(-1x^2+40x+5x-200)-(4(-1x+40))=0
We calculate terms in parentheses: -(4(-1x+40)), so:
4(-1x+40)
We multiply parentheses
-4x+160
Back to the equation:
-(-4x+160)
We get rid of parentheses
-1x^2+40x+5x+4x-200-160=0
We add all the numbers together, and all the variables
-1x^2+49x-360=0
a = -1; b = 49; c = -360;
Δ = b2-4ac
Δ = 492-4·(-1)·(-360)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{961}=31$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-31}{2*-1}=\frac{-80}{-2} =+40 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+31}{2*-1}=\frac{-18}{-2} =+9 $

See similar equations:

| 2b+4(-6+7b=-24+4b | | -80+11x=4x+151 | | 21=+m9;m=11 | | 8^x=3.91 | | Y=0.7x+10 | | 4x+10=6x–10 | | 5n-40=15 | | -3=r-1/2 | | 5/3x=45/2 | | 7n-6=113 | | -6(q+5)-3=21 | | 3x=3/8 | | 4x/9=0.75 | | -6(q+5)-3=22 | | 21=4j-(-9) | | m2=97 | | (D^2+3D+2)y=12X^2 | | 792=22(r+32) | | 2.5x=1.5 | | 1/2t-3/4=3/5t | | 438=17b-(-47) | | 21/4x=6/5 | | 6/5=9/4x | | 438=17b-47 | | -10q+1=61 | | 9/4x=6/5 | | n-57/8=5 | | 74=g/8+67 | | 18=c/5+23 | | 3/4y-5/6=2/3y | | 25=h/9+20 | | 98=7x-7(-7x+34) |

Equations solver categories