(x-46)+(x-35)+x+1/2x=360

Simple and best practice solution for (x-46)+(x-35)+x+1/2x=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-46)+(x-35)+x+1/2x=360 equation:



(x-46)+(x-35)+x+1/2x=360
We move all terms to the left:
(x-46)+(x-35)+x+1/2x-(360)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
x+(x-46)+(x-35)+1/2x-360=0
We get rid of parentheses
x+x+x+1/2x-46-35-360=0
We multiply all the terms by the denominator
x*2x+x*2x+x*2x-46*2x-35*2x-360*2x+1=0
Wy multiply elements
2x^2+2x^2+2x^2-92x-70x-720x+1=0
We add all the numbers together, and all the variables
6x^2-882x+1=0
a = 6; b = -882; c = +1;
Δ = b2-4ac
Δ = -8822-4·6·1
Δ = 777900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{777900}=\sqrt{100*7779}=\sqrt{100}*\sqrt{7779}=10\sqrt{7779}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-882)-10\sqrt{7779}}{2*6}=\frac{882-10\sqrt{7779}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-882)+10\sqrt{7779}}{2*6}=\frac{882+10\sqrt{7779}}{12} $

See similar equations:

| 5(7n-7)=-210 | | 2x-(3x+1)x=1 | | -8(x-2-22=-6 | | 1/3(2x+5)=7 | | 6n+5(1+6n)=2(1-13n)+13 | | 296+39x=350+33x | | 2(n+3)-4=8 | | X+3x=800 | | 9/8=40/x | | 2(-3m-3)=-4(-1+m) | | 11x-2x-18=36 | | (-b+3)=(-2b-) | | F(x)=5x3-3x2-10 | | 1/2x-2/3x=7+3 | | -2n-10=-7n | | -5(f+2=3f+2 | | 3(x-2)+2x(x+1)=-14 | | 5x+48-2x-27=0 | | -2(5*5/8-1)-3=x | | 20-7.50h=6.75 | | x-32=55x= | | 9/8=x/40 | | -10+9r=9r-10 | | 2a+4=6a-10 | | 59=33+x-19 | | 12x-10=0.2x+14 | | 13x-20=-10x+85 | | 7/x-1/2=3/16x+5 | | 2(3x-1)^2+9(3x-1)=50 | | 10x+12x=13 | | 2x-12=10+x+21 | | 12=5x-1 |

Equations solver categories