(x-4)*(7-3x)=x(x-4)

Simple and best practice solution for (x-4)*(7-3x)=x(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-4)*(7-3x)=x(x-4) equation:



(x-4)(7-3x)=x(x-4)
We move all terms to the left:
(x-4)(7-3x)-(x(x-4))=0
We add all the numbers together, and all the variables
(x-4)(-3x+7)-(x(x-4))=0
We multiply parentheses ..
(-3x^2+7x+12x-28)-(x(x-4))=0
We calculate terms in parentheses: -(x(x-4)), so:
x(x-4)
We multiply parentheses
x^2-4x
Back to the equation:
-(x^2-4x)
We get rid of parentheses
-3x^2-x^2+7x+12x+4x-28=0
We add all the numbers together, and all the variables
-4x^2+23x-28=0
a = -4; b = 23; c = -28;
Δ = b2-4ac
Δ = 232-4·(-4)·(-28)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-9}{2*-4}=\frac{-32}{-8} =+4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+9}{2*-4}=\frac{-14}{-8} =1+3/4 $

See similar equations:

| 90=8(n+43)-6 | | 3.2x-7.4x=7.8x+3.6 | | -2(j-11)+-14=-16 | | -3(n-6)+6=3 | | 2x-3/2+x+1/3=3x-1/3 | | a/2-5a/9=3 | | 4x-2(x-2)=4(2+x)-3 | | 7(4w+2)/5=4 | | 25x=600+8x | | 25x=300+8x | | 1/4/x=1/12 | | 4(x+2)(x-3)=4×-3x+2 | | 8x^2-78x+180=0 | | Y-8x=1 | | (x+4)x5=35 | | 8x^2-78x=54 | | 6s+40=196 | | X3+-4x2+5x+-20=0 | | 2x+15=-67-10x | | 8-4b+9+6b=33 | | 5-6x=-20 | | 5x+9=51-5x | | 9+3=12+1v-8/2 | | 4x/3-2=2 | | 8x+3(1-3x)=0 | | 8x+(1-3x)=0 | | 6x^2+6-13=0 | | (e+3)X2=16 | | 9.2(2x+1)=6.8(3x-2) | | 2z—4=6 | | -2-13.8x=-14x-1 | | 2a+38+54-a+5a-32=180 |

Equations solver categories