(x-4)(x+3)=7-x

Simple and best practice solution for (x-4)(x+3)=7-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-4)(x+3)=7-x equation:



(x-4)(x+3)=7-x
We move all terms to the left:
(x-4)(x+3)-(7-x)=0
We add all the numbers together, and all the variables
(x-4)(x+3)-(-1x+7)=0
We get rid of parentheses
(x-4)(x+3)+1x-7=0
We multiply parentheses ..
(+x^2+3x-4x-12)+1x-7=0
We add all the numbers together, and all the variables
(+x^2+3x-4x-12)+x-7=0
We get rid of parentheses
x^2+3x-4x+x-12-7=0
We add all the numbers together, and all the variables
x^2-19=0
a = 1; b = 0; c = -19;
Δ = b2-4ac
Δ = 02-4·1·(-19)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{19}}{2*1}=\frac{0-2\sqrt{19}}{2} =-\frac{2\sqrt{19}}{2} =-\sqrt{19} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{19}}{2*1}=\frac{0+2\sqrt{19}}{2} =\frac{2\sqrt{19}}{2} =\sqrt{19} $

See similar equations:

| 4(-3n+6)=96 | | 6x-(x+2)=5x-2 | | -112=14(x) | | -5f=-10-3f | | 4(-3n+6)=90 | | 5c-3=4c-0.5 | | 6t+10=-9-5+3t | | X+112+90+73=275+x | | 5+2x+x+1+7x-16=180 | | 4u+6=2u+406 | | 3x-5x=-2+8 | | -2/c-5=42 | | 3b=-8+4b | | X(x+20)+100=0 | | 9-4x=3x+7 | | 8(x+5)=7x+56 | | (2^4-3*5)q+13=(2*9-4^2)q+(3*4/12+1) | | –10c=7−9c | | 6u-3=4u+11 | | -7+10y=8y+3 | | 50x=184 | | (5)x/5=13(5) | | x/8=7/35 | | k+8=-16+4k | | 4/5x^=180 | | 2x/17=75 | | 10j-1=5j+49 | | n+11=0 | | x³+2x²-3x=0 | | –7+10y=8y+3 | | 10c+7=4c+37 | | (6x+9)=(5x-2) |

Equations solver categories