(x-4)(X+1)-(7+7)(x-3)=-7x+17

Simple and best practice solution for (x-4)(X+1)-(7+7)(x-3)=-7x+17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-4)(X+1)-(7+7)(x-3)=-7x+17 equation:



(x-4)(x+1)-(7+7)(x-3)=-7x+17
We move all terms to the left:
(x-4)(x+1)-(7+7)(x-3)-(-7x+17)=0
We add all the numbers together, and all the variables
(x-4)(x+1)-14(x-3)-(-7x+17)=0
We multiply parentheses
(x-4)(x+1)-14x-(-7x+17)+42=0
We get rid of parentheses
(x-4)(x+1)-14x+7x-17+42=0
We multiply parentheses ..
(+x^2+x-4x-4)-14x+7x-17+42=0
We add all the numbers together, and all the variables
(+x^2+x-4x-4)-7x+25=0
We get rid of parentheses
x^2+x-4x-7x-4+25=0
We add all the numbers together, and all the variables
x^2-10x+21=0
a = 1; b = -10; c = +21;
Δ = b2-4ac
Δ = -102-4·1·21
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4}{2*1}=\frac{6}{2} =3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4}{2*1}=\frac{14}{2} =7 $

See similar equations:

| (1+r)^9=2 | | 4x+18=3-x | | 1=5=p-p | | X+4=x2-16 | | 13+x-12=-12 | | 2-3(x+4)=-5x+4 | | |m|/5=3 | | 25-7x=-5x+11 | | 13+3+x=30 | | (5y+2)2−32=0 | | |5z+9|-19=0 | | 0,5x^2+9=0 | | 9+3+x=30 | | 7+3+x=30 | | c-6.7=8.9 | | (y+2)2+148=0 | | 7x=4=32 | | 5+3+x=30 | | x4+x2-12=0 | | x-1.45=4.56 | | 0=-4x^2+20x-15 | | 1x+4+4x+10(x-1)=24 | | 3×-5y=4,9×-7y=2 | | 3-3x=12+6x | | -x^2-7x=-8 | | 0.3(x+20)−0.06(x−10)=16.2 | | 17x^2+30x+75=0 | | |4b−5|=19 | | x=(3/5)*x+(2/3)*x | | 14(x+3)+24(x-5)=112 | | 14x+5=17x+19 | | 6x+2(-5+4x)=1-x |

Equations solver categories