(x-4)(3x+6)+(x-4)(12x+48)=0

Simple and best practice solution for (x-4)(3x+6)+(x-4)(12x+48)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-4)(3x+6)+(x-4)(12x+48)=0 equation:



(x-4)(3x+6)+(x-4)(12x+48)=0
We multiply parentheses ..
(+3x^2+6x-12x-24)+(x-4)(12x+48)=0
We get rid of parentheses
3x^2+6x-12x+(x-4)(12x+48)-24=0
We multiply parentheses ..
3x^2+(+12x^2+48x-48x-192)+6x-12x-24=0
We add all the numbers together, and all the variables
3x^2+(+12x^2+48x-48x-192)-6x-24=0
We get rid of parentheses
3x^2+12x^2+48x-48x-6x-192-24=0
We add all the numbers together, and all the variables
15x^2-6x-216=0
a = 15; b = -6; c = -216;
Δ = b2-4ac
Δ = -62-4·15·(-216)
Δ = 12996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{12996}=114$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-114}{2*15}=\frac{-108}{30} =-3+3/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+114}{2*15}=\frac{120}{30} =4 $

See similar equations:

| (x+4)^2-(x-3)^2=0 | | 5(x+2)+2(x-3)=18 | | Y=0.09-x^2 | | 6.25/2.54=x | | X/7+x=40 | | x+30+2(x+30)=180 | | 4d=d+9 | | p/10=6=11.5 | | 7+y/5=17 | | 17-2x=5x+2 | | 7+v/5=17 | | 200-50=75x | | a+a/2=3 | | (x)=x+x-10x+8 | | F(x)=x+x-10x+8 | | 0.3*x=12.6 | | 2(5p+6)=3(2p-6) | | (x-5)-3/5(x-2)=2.4 | | 8-5x+10=-7-6x+8 | | -20a=-20 | | 4q-5=15 | | 2(-8x+5)=-16x-13 | | x+x/17=90 | | 2(-8x+5)=-2(-16x-13 | | 42x-5=5x+4 | | 5a-12=64 | | (0.4907+0.9511+0.9499+0.9714+0.9403+0.9592+0.9386+0.9337+0.9981+x)/10=0.9 | | 0.1x^2-1.1x-1=0 | | (0.4907+0.9511+0.9499+0.9714+0.9403+0.9592+0.9386+0.9337+2x)/10=0.9 | | (3x-5)+2=15 | | 2.5x=35-2.5x | | (0.4907+0.9511+0.9499+0.9714+0.9403+0.9592+0.9386+3x)/10=0.9 |

Equations solver categories