(x-35)+x+(-46)+1/2x=360

Simple and best practice solution for (x-35)+x+(-46)+1/2x=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-35)+x+(-46)+1/2x=360 equation:



(x-35)+x+(-46)+1/2x=360
We move all terms to the left:
(x-35)+x+(-46)+1/2x-(360)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
determiningTheFunctionDomain (x-35)+x+1/2x-360+(-46)=0
We add all the numbers together, and all the variables
x+(x-35)+1/2x-406=0
We get rid of parentheses
x+x+1/2x-35-406=0
We multiply all the terms by the denominator
x*2x+x*2x-35*2x-406*2x+1=0
Wy multiply elements
2x^2+2x^2-70x-812x+1=0
We add all the numbers together, and all the variables
4x^2-882x+1=0
a = 4; b = -882; c = +1;
Δ = b2-4ac
Δ = -8822-4·4·1
Δ = 777908
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{777908}=\sqrt{4*194477}=\sqrt{4}*\sqrt{194477}=2\sqrt{194477}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-882)-2\sqrt{194477}}{2*4}=\frac{882-2\sqrt{194477}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-882)+2\sqrt{194477}}{2*4}=\frac{882+2\sqrt{194477}}{8} $

See similar equations:

| (x-5)(4-2x)(3x-1)=0 | | z+7/10=9 | | x*16.50=50000 | | 3x+31=85 | | 5^4x=73 | | 1/5x+12=2/5x-2 | | 19-3x=2x+4 | | m-3=3.6 | | 5^x+2=6 | | 12x+8=8x-3 | | 6x+3=-2x-1 | | 4x+1=2×-3 | | 4d=1/3​ | | 9=2w−1 | | 4=2w−2 | | X-7/x=-13 | | 12x+52=5x+32 | | 2x-5x+63=4x+35 | | (q-9)X2=14 | | 2(-x-3)×7-3x=-8 | | 4(v+2)=8 | | 10+y/8=9 | | 22−2f=2 | | (e+5)X4=36 | | 3(v-5)=8 | | 7t−2t=20 | | 4x+6=-2x+24 | | 4/12=7/d | | 3z/10-4=-8 | | 12x+55=x | | 2=2f−2 | | 5x-2.5=20 |

Equations solver categories