If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-35)+(x-46)+x+1/2x=360
We move all terms to the left:
(x-35)+(x-46)+x+1/2x-(360)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
x+(x-35)+(x-46)+1/2x-360=0
We get rid of parentheses
x+x+x+1/2x-35-46-360=0
We multiply all the terms by the denominator
x*2x+x*2x+x*2x-35*2x-46*2x-360*2x+1=0
Wy multiply elements
2x^2+2x^2+2x^2-70x-92x-720x+1=0
We add all the numbers together, and all the variables
6x^2-882x+1=0
a = 6; b = -882; c = +1;
Δ = b2-4ac
Δ = -8822-4·6·1
Δ = 777900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{777900}=\sqrt{100*7779}=\sqrt{100}*\sqrt{7779}=10\sqrt{7779}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-882)-10\sqrt{7779}}{2*6}=\frac{882-10\sqrt{7779}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-882)+10\sqrt{7779}}{2*6}=\frac{882+10\sqrt{7779}}{12} $
| 1+2x=x-6 | | 12x=6x=+9+x+7+x+10 | | 6x-25+4x=-55 | | 60+25y=35y+20 | | 9-6b=-9 | | 2(1-x)+11=≤3(2x-1) | | 26-3x=-4(x-5) | | -4z+4z+5z+14z-19z=-20 | | 11n=143 n= | | –(z+5)=-14 | | 4x+2(-3x-7)+5=13 | | 9p-2=-65 | | 5x+3-3x+2=13+4x | | 107+2x-9=180 | | |4x-2|+9=7 | | -3(n-1)=15 | | 7k−5k+3=19 | | 12x+6x=+9+x+7+x+10 | | 1/(12-8x)=2/3(6x) | | 6n-4=9n+14 | | -4=r/4-8 | | 4-6r=-68 | | 8=2x+14 | | 2x-3x+2+5=3+2. | | 4x-10=3x+13 | | 5x2x-1=x-12x-1 | | -9+x/16=-8 | | 5(x+8)-7=4x+3 | | 7g−2g+3=8 | | 60+86+2x=180 | | 11x+19=-3x | | 3.333b=5 |