(x-3)/2x=(x-5)/x

Simple and best practice solution for (x-3)/2x=(x-5)/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-3)/2x=(x-5)/x equation:



(x-3)/2x=(x-5)/x
We move all terms to the left:
(x-3)/2x-((x-5)/x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We calculate fractions
(x-3)*x)/2x^2+(-((x-5)*2x)/2x^2=0
We calculate fractions
((x-3)*x)*2x^2)/(2x^2+(*2x^2)+(-((x-5)*2x)*2x^2)/(2x^2+(*2x^2)=0
We calculate terms in parentheses: +(-((x-5)*2x)*2x^2)/(2x^2+(*2x^2), so:
-((x-5)*2x)*2x^2)/(2x^2+(*2x^2
We multiply all the terms by the denominator
-((x-5)*2x)*2x^2)+((*2x^2)*(2x^2
Back to the equation:
+(-((x-5)*2x)*2x^2)+((*2x^2)*(2x^2)
We get rid of parentheses
((x-3)*x)*2x^2)/(2x^2+*2x^2+(-((x-5)*2x)*2x^2)+((*2x^2)*2x^2=0
We multiply all the terms by the denominator
((x-3)*x)*2x^2)+(*2x^2)*(2x^2+((-((x-5)*2x)*2x^2))*(2x^2+(((*2x^2)*2x^2)*(2x^2=0

See similar equations:

| 3½=x-1½ | | 3b+4=19-2b | | 2x=14=64 | | 3(5y-2)=4y+5 | | 2z-13=z+42 | | 4x+6/x-3-25x-75/2x-3=5 | | 0.86=x/200 | | 5(2x-1)-(3x+4)=12 | | 10x10=100 | | 2s+52=11s-65 | | x2+5x+21/4=0 | | -3(x+2)=11-3x | | 3m+4.75=27.75 | | 4p+31=9p-9 | | 24x3-6x=0 | | 2u=18-7u | | 12x-3=32x+7 | | 133+x=x+53 | | 3n+4.75=27.75 | | 9x-6=7x-54 | | 9p-79=10p-89 | | -2x=4=-10 | | -26=-13zz= | | 9x-6=7x+54 | | 3n=19683 | | -3(x+3)=-3(3+x) | | -10+18=-3(5y-7)-8 | | 7(2x+2)=6x+18 | | -6x-36=6x+36 | | x+x+50+x/7=1250 | | 2a-64=a+1 | | (4x+6+x)=-15-2x |

Equations solver categories