If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-3)(x+3)+4=0
We use the square of the difference formula
x^2-9+4=0
We add all the numbers together, and all the variables
x^2-5=0
a = 1; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·1·(-5)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*1}=\frac{0-2\sqrt{5}}{2} =-\frac{2\sqrt{5}}{2} =-\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*1}=\frac{0+2\sqrt{5}}{2} =\frac{2\sqrt{5}}{2} =\sqrt{5} $
| (x-3)²+4=0 | | 3y=2y+1/8 | | 2k/5-10=+2k/5+6 | | 6h-8h=12 | | x➗8=5.6 | | 11(7d−9)=11(5d−6 | | 11(7d−9)=11(5d−6) | | 9(4u−2)=8(4u−1) | | 9(4u−2)=8(4u−1) | | 6(5n+5)=2(3n+3) | | 2(7x+2)=3(6x+-8) | | 10(11x+4)=10(12x+6) | | -5(6+5m)-5(m-6)=-5m+5m | | -5(6+5m)-5(m-6)=-5m+5 | | 7x+3=2x−7 | | x=70/9 | | (25)^2-x^2=(30)^2-(25-x)^2 | | 2x+4(x+1)=6(x+23) | | 6x=x^2-2x | | 14=-7+2x | | 68-4x=3x+12 | | 6(x+-2)=48 | | 4+7m=8m-4-3m | | 2/3|x+7|=16 | | 26=t-29 | | 7(x+1)+2(x+3)=4(6-3x)-5(4x+2) | | 900=375+15x | | 39+2v=8v-3(7-8v) | | 12x-24=12x+22 | | x-7/3x+4=2 | | 900=875+35x | | 5x+3+2x=5 |