(x-3)(2x-1)=(2x-1)(2x+3)

Simple and best practice solution for (x-3)(2x-1)=(2x-1)(2x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-3)(2x-1)=(2x-1)(2x+3) equation:



(x-3)(2x-1)=(2x-1)(2x+3)
We move all terms to the left:
(x-3)(2x-1)-((2x-1)(2x+3))=0
We multiply parentheses ..
(+2x^2-1x-6x+3)-((2x-1)(2x+3))=0
We calculate terms in parentheses: -((2x-1)(2x+3)), so:
(2x-1)(2x+3)
We multiply parentheses ..
(+4x^2+6x-2x-3)
We get rid of parentheses
4x^2+6x-2x-3
We add all the numbers together, and all the variables
4x^2+4x-3
Back to the equation:
-(4x^2+4x-3)
We get rid of parentheses
2x^2-4x^2-1x-6x-4x+3+3=0
We add all the numbers together, and all the variables
-2x^2-11x+6=0
a = -2; b = -11; c = +6;
Δ = b2-4ac
Δ = -112-4·(-2)·6
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-13}{2*-2}=\frac{-2}{-4} =1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+13}{2*-2}=\frac{24}{-4} =-6 $

See similar equations:

| (x-3)(2x-1)=(2x-1)(2x+3 | | 4(13-2(50/24-x))+18=30 | | 5y-12=y+4= | | b/15=$120 | | 4u+6=-2(u+3) | | 32-4x=-7(1-5x) | | -4(1-8k)+7k=-4-k | | 5/4x-2=1/4x+1 | | 0.03x+0.045(8000-x)=345 | | 0.05x+0.16(x+1)=5.83 | | -2(g-5)+4=-3(g+1) | | 1=-4+y/3 | | 2×+5=3x-10 | | 5x+2-7=4+x+9-2x | | -16=-(1+4a)+6a | | -x2+29x-180=0 | | (2/3)b+b=0 | | 6s+9=–7+8s | | 5/3-6x=0.4 | | 3.75x+2.7=1.75x+1.7 | | d-50=50 | | 9/2+4x=0.8 | | 2(x)+3(4x)=990.5 | | 6+7q=–9+4q | | –10r=–7r−9 | | 2(l)+3(4l)=990.5 | | 4(3x+1)=11x-3 | | 5.25-y=19.75+2y | | 10c+3+10=–5c−2 | | 52x·510=(53x−4) | | 7(x)=x^2+0x-9 | | x+147+x+27=160 |

Equations solver categories